7 research outputs found

    Long homopurine•homopyrimidine sequences are characteristic of genes expressed in brain and the pseudoautosomal region

    Get PDF
    Homo(purine•pyrimidine) sequences (R•Y tracts) with mirror repeat symmetries form stable triplexes that block replication and transcription and promote genetic rearrangements. A systematic search was conducted to map the location of the longest R•Y tracts in the human genome in order to assess their potential function(s). The 814 R•Y tracts with ≥250 uninterrupted base pairs were preferentially clustered in the pseudoautosomal region of the sex chromosomes and located in the introns of 228 annotated genes whose protein products were associated with functions at the cell membrane. These genes were highly expressed in the brain and particularly in genes associated with susceptibility to mental disorders, such as schizophrenia. The set of 1957 genes harboring the 2886 R•Y tracts with ≥100 uninterrupted base pairs was additionally enriched in proteins associated with phosphorylation, signal transduction, development and morphogenesis. Comparisons of the ≥250 bp R•Y tracts in the mouse and chimpanzee genomes indicated that these sequences have mutated faster than the surrounding regions and are longer in humans than in chimpanzees. These results support a role for long R•Y tracts in promoting recombination and genome diversity during evolution through destabilization of chromosomal DNA, thereby inducing repair and mutation

    Genome-wide association study provides evidence for a breast cancer risk locus at 6q22.33

    No full text
    We performed a three-phase genome-wide association study (GWAS) using cases and controls from a genetically isolated population, Ashkenazi Jews (AJ), to identify loci associated with breast cancer risk. In the first phase, we compared allele frequencies of 150,080 SNPs in 249 high-risk, BRCA1/2 mutation-negative AJ familial cases and 299 cancer-free AJ controls using χ2 and the Cochran–Armitage trend tests. In the second phase, we genotyped 343 SNPs from 123 regions most significantly associated from stage 1, including 4 SNPs from the FGFR2 region, in 950 consecutive AJ breast cancer cases and 979 age-matched AJ controls. We replicated major associations in a third independent set of 243 AJ cases and 187 controls. We obtained a significant allele P value of association with AJ breast cancer in the FGFR2 region (P = 1.5 × 10−5, odds ratio (OR) 1.26, 95% confidence interval (CI) 1.13–1.40 at rs1078806 for all phases combined). In addition, we found a risk locus in a region of chromosome 6q22.33 (P = 2.9 × 10−8, OR 1.41, 95% CI 1.25–1.59 at rs2180341). Using several SNPs at each implicated locus, we were able to verify associations and impute haplotypes. The major haplotype at the 6q22.33 locus conferred protection from disease, whereas the minor haplotype conferred risk. Candidate genes in the 6q22.33 region include ECHDC1, which encodes a protein involved in mitochondrial fatty acid oxidation, and also RNF146, which encodes a ubiquitin protein ligase, both known pathways in breast cancer pathogenesis

    A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration

    No full text
    Age-related macular degeneration (AMD) is the most frequent cause of irreversible blindness in the elderly in developed countries. Our previous studies implicated activation of complement in the formation of drusen, the hallmark lesion of AMD. Here, we show that factor H (HF1), the major inhibitor of the alternative complement pathway, accumulates within drusen and is synthesized by the retinal pigmented epithelium. Because previous linkage analyses identified chromosome 1q25-32, which harbors the factor H gene (HF1/CFH), as an AMD susceptibility locus, we analyzed HF1 for genetic variation in two independent cohorts comprised of ≈900 AMD cases and 400 matched controls. We found association of eight common HF1 SNPs with AMD; two common missense variants exhibit highly significant associations (I62V, χ(2) = 26.1 and P = 3.2 × 10(-7) and Y402H, χ(2) = 54.4 and P = 1.6 × 10(-13)). Haplotype analysis reveals that multiple HF1 variants confer elevated or reduced risk of AMD. One common at-risk haplotype is present at a frequency of 50% in AMD cases and 29% in controls [odds ratio (OR) = 2.46, 95% confidence interval (1.95-3.11)]. Homozygotes for this haplotype account for 24% of cases and 8% of controls [OR = 3.51, 95% confidence interval (2.13-5.78)]. Several protective haplotypes are also identified (OR = 0.44-0.55), further implicating HF1 function in the pathogenetic mechanisms underlying AMD. We propose that genetic variation in a regulator of the alternative complement pathway, when combined with a triggering event, such as infection, underlie a major proportion of AMD in the human population

    Multilocus analysis of age-related macular degeneration

    No full text
    Age-related macular degeneration (AMD) is a late onset vision disorder. Recent studies demonstrate that alterations in complement cascade genes are associated with AMD. Of the three identified complement loci, variants in complement factor H (CFH) have the highest impact as does an independent locus at 10q26. Our matched case–control study using the Age-Related Eye Disease Study (AREDS) cohort confirms and extends the associations in these loci. Subjects were genotyped for single nucleotide polymorphisms (SNPs) from CFH, complement component 2 (C2), complement component 3 (C3), complement factor B (CFB), age-related maculopathy susceptibility (ARMS2), HtrA serine peptidase 1 (HTRA1), and apolipoprotein E (APOE). Individual SNPs, and haplotypes showed risk trends consistent with those seen in other population studies for CFH, C3, C2, and CFB. SNP rs10490924 on chromosome 10 in exon 1 of the ARMS2 gene showed a highly significant association with an odds ratio (OR) of 3.2 (95% CI 2.4–4.2) for the risk allele and rs11200638 located in the proximal promoter region of HTRA1 showed a higher significant association with an OR of 3.4 (95% CI 2.5–4.6) with our AMD cases. We found that APOE haplotypes were not significantly associated with disease status. Adjustments for other risk factors did not significantly alter the observed associations. This study validates the complement pathway's involvement in AMD and suggests that allelic variants in complement genes have a direct role in disease. These results also support previous findings that variants in the region of 10q26 exert an independent risk for AMD
    corecore