447 research outputs found
Optical cooling and trapping of highly magnetic atoms: The benefits of a spontaneous spin polarization
From the study of long-range-interacting systems to the simulation of gauge
fields, open-shell Lanthanide atoms with their large magnetic moment and narrow
optical transitions open novel directions in the field of ultracold quantum
gases. As for other atomic species, the magneto-optical trap (MOT) is the
working horse of experiments but its operation is challenging, due to the large
electronic spin of the atoms. Here we present an experimental study of
narrow-line Dysprosium MOTs. We show that the combination of radiation pressure
and gravitational forces leads to a spontaneous polarization of the electronic
spin. The spin composition is measured using a Stern-Gerlach separation of spin
levels, revealing that the gas becomes almost fully spin-polarized for large
laser frequency detunings. In this regime, we reach the optimal operation of
the MOT, with samples of typically atoms at a temperature of
15\,K. The spin polarization reduces the complexity of the radiative
cooling description, which allows for a simple model accounting for our
measurements. We also measure the rate of density-dependent atom losses,
finding good agreement with a model based on light-induced Van der Waals
forces. A minimal two-body loss rate cm/s is
reached in the spin-polarized regime. Our results constitute a benchmark for
the experimental study of ultracold gases of magnetic Lanthanide atoms.Comment: 21 pages, 9 figure
Revealing the Superfluid Lambda Transition in the Universal Thermodynamics of a Unitary Fermi Gas
We have observed the superfluid phase transition in a strongly interacting
Fermi gas via high-precision measurements of the local compressibility, density
and pressure down to near-zero entropy. Our data completely determine the
universal thermodynamics of strongly interacting fermions without any fit or
external thermometer. The onset of superfluidity is observed in the
compressibility, the chemical potential, the entropy, and the heat capacity. In
particular, the heat capacity displays a characteristic lambda-like feature at
the critical temperature of . This is the first clear
thermodynamic signature of the superfluid transition in a spin-balanced atomic
Fermi gas. Our measurements provide a benchmark for many-body theories on
strongly interacting fermions, relevant for problems ranging from
high-temperature superconductivity to the equation of state of neutron stars.Comment: 11 pages, 8 figure
Factors influencing epiphytic bryophyte and lichen species richness at different spatial scales in managed temperate forests
The effect of management related factors on species richness of epiphytic
bryophytes and lichens was studied in managed deciduous-coniferous mixed
forests in Western-Hungary. At the stand level, the potential explanatory
variables were tree species composition, stand structure, microclimate and
light conditions, landscape and historical variables; while at tree level host
tree species, tree size and light were studied. Species richness of the two
epiphyte groups was positively correlated. Both for lichen and bryophyte plot
level richness, the composition and diversity of tree species and the abundance of shrub layer were the most influential positive factors. Besides, for
bryophytes the presence of large trees, while for lichens amount and
heterogeneity of light were important. Tree level richness was mainly
determined by host tree species for both groups. For bryophytes oaks, while for lichens oaks and hornbeam turned out the most favourable hosts. Tree size
generally increased tree level species richness, except on pine for bryophytes
and on hornbeam for lichens.
The key variables for epiphytic diversity of the region were directly
influenced by recent forest management; historical and landscape variables
were not influential. Forest management oriented to the conservation of
epiphyte s should focus on: (i) the maintenance of tree species diversity in
mixed stands; (ii) increment the proportion of deciduous trees (mainly oaks);
(iii) conserving large trees within the stands; (iv) providing the presence of
shrub and regeneration layer; (v) creating heterogeneous light conditions. For
these purposes tree selection and selective cutting management seem more
appropriate than shelterwood system
Exploring the Thermodynamics of a Universal Fermi Gas
From sand piles to electrons in metals, one of the greatest challenges in
modern physics is to understand the behavior of an ensemble of strongly
interacting particles. A class of quantum many-body systems such as neutron
matter and cold Fermi gases share the same universal thermodynamic properties
when interactions reach the maximum effective value allowed by quantum
mechanics, the so-called unitary limit [1,2]. It is then possible to simulate
some astrophysical phenomena inside the highly controlled environment of an
atomic physics laboratory. Previous work on the thermodynamics of a
two-component Fermi gas led to thermodynamic quantities averaged over the trap
[3-5], making it difficult to compare with many-body theories developed for
uniform gases. Here we develop a general method that provides for the first
time the equation of state of a uniform gas, as well as a detailed comparison
with existing theories [6,14]. The precision of our equation of state leads to
new physical insights on the unitary gas. For the unpolarized gas, we prove
that the low-temperature thermodynamics of the strongly interacting normal
phase is well described by Fermi liquid theory and we localize the superfluid
transition. For a spin-polarized system, our equation of state at zero
temperature has a 2% accuracy and it extends the work of [15] on the phase
diagram to a new regime of precision. We show in particular that, despite
strong correlations, the normal phase behaves as a mixture of two ideal gases:
a Fermi gas of bare majority atoms and a non-interacting gas of dressed
quasi-particles, the fermionic polarons [10,16-18].Comment: 8 pages, 5 figure
Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion.
Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival.
Cardiac stem cells and early committed cells (CSCs-ECCs) express c-Met and insulin-like growth factor-1
(IGF-1) receptors and synthesize and secrete the corresponding ligands, hepatocyte growth factor (HGF) and IGF-1.
HGF mobilizes CSCs-ECCs and IGF-1 promotes their survival and proliferation. Therefore, HGF and IGF-1 were
injected in the hearts of infarcted mice to favor, respectively, the translocation of CSCs-ECCs from the surrounding
myocardium to the dead tissue and the viability and growth of these cells within the damaged area. To facilitate
migration and homing of CSCs-ECCs to the infarct, a growth factor gradient was introduced between the site of storage
of primitive cells in the atria and the region bordering the infarct. The newly-formed myocardium contained arterioles,
capillaries, and functionally competent myocytes that with time increased in size, improving ventricular performance at
healing and long thereafter. The volume of regenerated myocytes was 2200 m3 at 16 days after treatment and reached
5100 m3 at 4 months. In this interval, nearly 20% of myocytes reached the adult phenotype, varying in size from 10 000
to 20 000 m3. Moreover, there were 4313 arterioles and 15548 capillaries/mm2 myocardium at 16 days, and 316
arterioles and 39056 capillaries at 4 months. Myocardial regeneration induced increased survival and rescued animals
with infarcts that were up to 86% of the ventricle, which are commonly fatal. In conclusion, the heart has an endogenous
reserve of CSCs-ECCs that can be activated to reconstitute dead myocardium and recover cardiac function
Multimodal seismic assessment of infrastructures retrofitted with exoskeletons: insights from the Foggia Airport case study
Addressing the seismic vulnerability of infrastructures is critical, especially for those built before the introduction of the current seismic regulations. One of the primary challenges lies in retrofitting these buildings without interrupting their functionality. In this context, the use of exoskeletons for seismic retrofitting represents an effective solution. This approach increases the seismic resistance and ensures the continuous operation of the building during retrofitting. This advantage is especially crucial for critical infrastructures, such as airports. Nevertheless, traditional seismic assessment methods based on pushover analyses might not accurately predict the seismic capacity of complex infrastructures dominated by local vibration modes. To bridge this gap, the study proposes refining the multimodal pushover analysis tailored for seismic vulnerability assessments of large infrastructures with exoskeletons characterized by low modal participation ratios. The Foggia Airport case study exemplifies these points and highlights the practical applications of the discussed advancements. The authors compared two force distributions for push-over analysis, addressing the fine-tuning of exoskeletons to maximize their seismic resistance
Inventory of the vascular flora of the alkaline fen “Torbiera di Lipoi” (Veneto, northern Italy)
On the basis of literature, and herbarium data and new field research, we provide a diachronic floristic inventory of a small alkaline fen meadow close to the southern border of the Dolomiti Bellunesi National Park (Veneto, N-Italy), whose toponymal is “Torbiera di Lipoi”. Overall, 319 infrageneric taxa were listed. Results indicate that, despite natural reforestation triggered by the abandonment of the traditional management of the fen, most of the fen-related vascular species still occur, including red-listed species, although their populations have probably decreased over time. Moreover, alien species are still a minor component of the flora, occurring in small scattered populations. However, there are signals of vulnerability, and probably the current vascular flora reflects a previous situation in which fen-related habitats were much larger than today. This urgently claims for active maintenance of the small open areas that still exist to counteract extinction debt dynamics
Fossiliferous Cretaceous Amber from Myanmar (Burma): Its Rediscovery, Biotic Diversity, and Paleontological Significance
Crossovers in Unitary Fermi Systems
Universality and crossover is described for attractive and repulsive
interactions where, respectively, the BCS-BEC crossover takes place and a
ferromagnetic phase transition is claimed. Crossovers are also described for
optical lattices and multicomponent systems. The crossovers, universal
parameters and phase transitions are described within the Leggett and NSR
models and calculated in detail within the Jastrow-Slater approximation. The
physics of ultracold Fermi atoms is applied to neutron, nuclear and quark
matter, nuclei and electrons in solids whenever possible. Specifically, the
differences between optical lattices and cuprates is discussed w.r.t.
antiferromagnetic, d-wave superfluid phases and phase separation.Comment: 50 pages, 15 figures. Contribution to Lecture Notes in Physics
"BCS-BEC crossover and the Unitary Fermi Gas" edited by W. Zwerge
- …
