656 research outputs found

    Fluvial and permafrost history of the lower Lena River, north‐eastern Siberia, over late Quaternary time

    Get PDF
    Arctic warming and permafrost thaw visibly expose changes in the landscape of the Lena River delta, the largest Arctic delta. Determining the past and modern river regime of thick deltaic deposits shaping the Lena River mouth in north-eastern Siberia is critical for understanding the history of delta formation and carbon sequestration. Using a 65 m long sediment core from the delta apex a set of sedimentological techniques is applied to aid reconstructing the Lena River history. The analysis includes: (i) grain-size measurements and the determination of the bedload composition; (ii) X-ray fluorescence, X-ray diffractometry, and magnetic susceptibility measurements and heavy mineral analysis for tracking mineral change; (iii) pH, electrical conductivity, ionic concentrations, and the ή18O and ήD stable isotope composition from ground ice for reconstructing permafrost formation. In addition; (iv) total and dissolved organic carbon is assessed. Chronology is based on; (vi) radiocarbon dating of organic material (accelerator mass spectrometry and conventional) and is complemented by two infrared – optically stimulated luminescence dates. The record stretches back approximately to Marine Isotope Stage 7. It holds periods from traction, over saltation, to suspension load sedimentation. Minerogenic signals do not indicate provenance change over time. They rather reflect the change from high energy to a lower energy regime after Last Glacial Maximum time parallel to the fining-up grain-size trend. A prominent minimum in the ground ice stable isotope record at early Holocene highlights that a river arm migration and an associated refreeze of the underlying river talik has altered the isotopic composition at that time. Fluvial re-routing might be explained by internal dynamics in the Lena River lowland or due to a tectonic movement, since the study area is placed in a zone of seismic activity. At the southern Laptev Sea margin onshore continental compressional patterns are bordering offshore extensional normal faults

    Stable oxygen and carbon isotopes of carbonates in lake sediments as a paleoflood proxy

    Get PDF
    Lake sediments are increasingly explored as reliable paleoflood archives. In addition to established flood proxies including detrital layer thickness, chemical composition, and grain size, we explore stable oxygen and carbon isotope data as paleoflood proxies for lakes in catchments with carbonate bedrock geology. In a case study from Lake Mondsee (Austria), we integrate high-resolution sediment trapping at a proximal and a distal location and stable isotope analyses of varved lake sediments to investigate flood-triggered detrital sediment flux. First, we demonstrate a relation between runoff, detrital sediment flux, and isotope values in the sediment trap record covering the period 2011–2013 CE including 22 events with daily (hourly) peak runoff ranging from 10 (24) m3 s−1 to 79 (110) m3 s−1. The three- to ten-fold lower flood-triggered detrital sediment deposition in the distal trap is well reflected by attenuated peaks in the stable isotope values of trapped sediments. Next, we show that all nine flood-triggered detrital layers deposited in a sediment record from 1988 to 2013 have elevated isotope values compared with endogenic calcite. In addition, even two runoff events that did not cause the deposition of visible detrital layers are distinguished by higher isotope values. Empirical thresholds in the isotope data allow estimation of magnitudes of the majority of floods, although in some cases flood magnitudes are overestimated because local effects can result in too-high isotope values. Hence we present a proof of concept for stable isotopes as reliable tool for reconstructing flood frequency and, although with some limitations, even for flood magnitudes

    Identifying Drivers of Seasonality in Lena River Biogeochemistry and Dissolved Organic Matter Fluxes

    Get PDF
    Warming air temperatures, shifting hydrological regimes and accelerating permafrost thaw in the catchments of the Arctic rivers is affecting their biogeochemistry. Arctic river monitoring is necessary to observe changes in the mobilization of dissolved organic matter (DOM) from permafrost. The Lena River is the second largest Arctic river and 71% of its catchment is continuous permafrost. Biogeochemical parameters, including temperature, electrical conductivity (EC), stable water isotopes, dissolved organic carbon (DOC) and absorption by colored dissolved organic matter (aCDOM) have been measured as part of a new high-frequency sampling program in the central Lena River Delta. The results show strong seasonal variations of all biogeochemical parameters that generally follow seasonal patterns of the hydrograph. Optical indices of DOM indicate a trend of decreasing aromaticity and molecular weight from spring to winter. High-frequency sampling improved our estimated annual fluvial flux of annual dissolved organic carbon flux (6.79 Tg C). EC and stable isotope data were used to distinguish three different source water types which explain most of the seasonal variation in the biogeochemistry of the Lena River. These water types match signatures of (1) melt water, (2) rain water, and (3) subsurface water. Melt water and rain water accounted for 84% of the discharge flux and 86% of the DOC flux. The optical properties of melt water DOM were characteristic of fresh organic matter. In contrast, the optical properties of DOM in subsurface water revealed lower aromaticity and lower molecular weights, which indicate a shift toward an older organic matter source mobilized from deeper soil horizons or permafrost deposits. The first year of this new sampling program sets a new baseline for flux calculations of dissolved matter and has enabled the identification and characterization of water types that drive the seasonality of the Lena River water properties

    Do multiple experimenters improve the reproducibility of animal studies?

    Get PDF
    The credibility of scientific research has been seriously questioned by the widely claimed "reproducibility crisis". In light of this crisis, there is a growing awareness that the rigorous standardisation of experimental conditions may contribute to poor reproducibility of animal studies. Instead, systematic heterogenisation has been proposed as a tool to enhance reproducibility, but a real-life test across multiple independent laboratories is still pending. The aim of this study was therefore to test whether heterogenisation of experimental conditions by using multiple experimenters improves the reproducibility of research findings compared to standardised conditions with only one experimenter. To this end, we replicated the same animal experiment in 3 independent laboratories, each employing both a heterogenised and a standardised design. Whereas in the standardised design, all animals were tested by a single experimenter; in the heterogenised design, 3 different experimenters were involved in testing the animals. In contrast to our expectation, the inclusion of multiple experimenters in the heterogenised design did not improve the reproducibility of the results across the 3 laboratories. Interestingly, however, a variance component analysis indicated that the variation introduced by the different experimenters was not as high as the variation introduced by the laboratories, probably explaining why this heterogenisation strategy did not bring the anticipated success. Even more interestingly, for the majority of outcome measures, the remaining residual variation was identified as an important source of variance accounting for 41% (CI95 [34%, 49%]) to 72% (CI95 [58%, 88%]) of the observed total variance. Despite some uncertainty surrounding the estimated numbers, these findings argue for systematically including biological variation rather than eliminating it in animal studies and call for future research on effective improvement strategies

    Isotopic traits of the Arctic water cycle

    Get PDF
    The Arctic hydrological cycle undergoes rapid and pronounced changes, including alterations in oceanic and atmospheric circulations, and precipitation patterns. Stable water isotopes (ή18O, ή2H, d-excess) can be used to trace these processes including their potential to feedback into the global climate system. The MOSAiC expedition provided a unique opportunity to collect, analyze, and synthesize discrete samples of the different hydrological compartments in the central Arctic, comprising sea ice, seawater, snow, and melt ponds. Here, we present spatio-temporal variations in the isotopic signatures of more than 1,000 water samples. We found that (i) average seawater ή18O of -1.7‰ conforms to observed and modelled isotopic traits of the Arctic Ocean; (ii) second year ice is relatively depleted compared to first year ice with average ή18O values of -3.1‰ and -0.7‰, respectively. This might be due to post-depositional exchange processes with snow, which has the most depleted isotopic signature among all compartments (mean ή18O=-15.1‰). Our dataset provides an unprecedented description of the present-day isotopic composition of the Arctic water covering a complete seasonal cycle. This will ultimately contribute to resolve the linkages between sea ice, ocean, and atmosphere during critical transitions from frozen ocean to open water conditions

    Holocene hydrological variability of Lake Ladoga, northwest Russia, as inferred from diatom oxygen isotopes

    Get PDF
    This article presents a new comprehensive assessment of the Holocene hydrological variability of Lake Ladoga, northwest Russia. The reconstruction is based on oxygen isotopes of lacustrine diatom silica (ή18Odiatom) preserved in sediment core Co 1309, and is complemented by a diatom assemblage analysis and a survey of modern isotope hydrology. The data indicate that Lake Ladoga has existed as a freshwater reservoir since at least 10.8 cal. ka BP. The ή18Odiatom values range from +29.8 to +35.0‰, and relatively higher ή18Odiatom values around +34.7‰ between c. 7.1 and 5.7 cal. ka BP are considered to reflect the Holocene Thermal Maximum. A continuous depletion in ή18Odiatom since c. 6.1 cal. ka BP accelerates after c. 4 cal. ka BP, indicating Middle to Late Holocene cooling that culminates during the interval 0.8–0.2 cal. ka BP, corresponding to the Little Ice Age. Lake‐level rises result in lower ή18Odiatom values, whereas lower lake levels cause higher ή18Odiatom values. The diatom isotope record gives an indication for a rather early opening of the Neva River outflow at c. 4.4–4.0 cal. ka BP. Generally, overall high ή18Odiatom values around +33.5‰ characterize a persistent evaporative lake system throughout the Holocene. As the Lake Ladoga ή18Odiatom record is roughly in line with the 60°N summer insolation, a linkage to broader‐scale climate change is likely

    Northern Eurasian large lakes history: sediment records obtained in the frame of Russian-German research project PLOT

    Get PDF
    Russian-German project PLOT (Paleolimnological Transect) aims at investigating the regional responses of the quaternary climate and environment on external forcing and feedback mechanisms along a more than 6000 km long longitudinal transect crossing Northern Eurasia. The well-dated record from Lake ElÂŽgygytgyn used as reference site for comparison the local climatic and environmental histories. Seismic surveys and sediment coring up to 54 m below lake floor performed in the frame of the project on Ladoga Lake (North-West of Russia; 2013), Lake Bolshoye Shchuchye (Polar Ural; 2016), Lake Levinson-Lessing and Lake Taymyr (Taymyr Peninsula; 2016-2017), Lake Emanda (Verkhoyansk Range; 2017). Fieldwork at Polar Ural and Taymyr Peninsula was conducted in collaboration with the Russian-Norwegian CHASE (Climate History along the Arctic Seaboard of Eurasia) project. Here, we present the major results of the project obtained so far

    New insights into the classification and nomenclature of cortical GABAergic interneurons.

    Get PDF
    A systematic classification and accepted nomenclature of neuron types is much needed but is currently lacking. This article describes a possible taxonomical solution for classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based interactive system that allows experts to classify neurons with pre-determined criteria. Using Bayesian analysis and clustering algorithms on the resulting data, we investigated the suitability of several anatomical terms and neuron names for cortical GABAergic interneurons. Moreover, we show that supervised classification models could automatically categorize interneurons in agreement with experts' assignments. These results demonstrate a practical and objective approach to the naming, characterization and classification of neurons based on community consensus
    • 

    corecore