1,169 research outputs found

    Alternative use of artificial quarry lakes as a source of thermal energy for greenhouses

    Get PDF
    In northern Italy, most greenhouses rely on gas or oil heaters which are sometimes subject to high operating costs. Several greenhouses are nearby quarry lakes, which are the legacy of the expansion of cities in the last decades, including Turin (NW Italy). About 20 quarry lakes were excavated close to the Po riverbed in the southern part of this urban area, along a belt of more than 30 km in length, with an overall volume exceeding 10 million m3 water. The study addresses these artificial lakes as a low enthalpy thermal energy source, potentially providing heat to surrounding agri-business buildings. Detailed temperature monitoring of a large lake quarry was conducted over two years at different depths, measuring the surrounding groundwater level as well. Two different behaviors of the lake during the winter and summer seasons enabled the definition of a quite low water mixing process between the surrounding aquifers and the lake (in the range of 2–4◦ C). An evaluation of the heat extraction potential using the lake as a heat source, depending on water temperature and its volume, and a qualitative comparison with groundwater systems are proposed. This study contributes to increasing knowledge on an overlooked resource for sustainable heating

    Extensive dissolution of live pteropods in the Southern Ocean

    Get PDF
    The carbonate chemistry of the surface ocean is rapidly changing with ocean acidification, a result of human activities. In the upper layers of the Southern Ocean, aragonite—a metastable form of calcium carbonate with rapid dissolution kinetics—may become undersaturated by 2050 (ref. 2). Aragonite undersaturation is likely to affect aragonite-shelled organisms, which can dominate surface water communities in polar regions. Here we present analyses of specimens of the pteropod Limacina helicina antarctica that were extracted live from the Southern Ocean early in 2008. We sampled from the top 200m of the water column, where aragonite saturation levels were around 1, as upwelled deep water is mixed with surface water containing anthropogenic CO2. Comparing the shell structure with samples from aragonite-supersaturated regions elsewhere under a scanning electron microscope, we found severe levels of shell dissolution in the undersaturated region alone. According to laboratory incubations of intact samples with a range of aragonite saturation levels, eight days of incubation in aragonite saturation levels of 0.94– 1.12 produces equivalent levels of dissolution. As deep-water upwelling and CO2 absorption by surface waters is likely to increase as a result of human activities2,4, we conclude that upper ocean regions where aragonite-shelled organisms are affected by dissolution are likely to expand

    Evaluation of multiple protein docking structures using correctly predicted pairwise subunits

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many functionally important proteins in a cell form complexes with multiple chains. Therefore, computational prediction of multiple protein complexes is an important task in bioinformatics. In the development of multiple protein docking methods, it is important to establish a metric for evaluating prediction results in a reasonable and practical fashion. However, since there are only few works done in developing methods for multiple protein docking, there is no study that investigates how accurate structural models of multiple protein complexes should be to allow scientists to gain biological insights.</p> <p>Methods</p> <p>We generated a series of predicted models (decoys) of various accuracies by our multiple protein docking pipeline, Multi-LZerD, for three multi-chain complexes with 3, 4, and 6 chains. We analyzed the decoys in terms of the number of correctly predicted pair conformations in the decoys.</p> <p>Results and conclusion</p> <p>We found that pairs of chains with the correct mutual orientation exist even in the decoys with a large overall root mean square deviation (RMSD) to the native. Therefore, in addition to a global structure similarity measure, such as the global RMSD, the quality of models for multiple chain complexes can be better evaluated by using the local measurement, the number of chain pairs with correct mutual orientation. We termed the fraction of correctly predicted pairs (RMSD at the interface of less than 4.0Å) as <it>fpair </it>and propose to use it for evaluation of the accuracy of multiple protein docking.</p

    SUMOylation of nuclear actin

    Get PDF
    Actin, a major component of the cytoplasm, is also abundant in the nucleus. Nuclear actin is involved in a variety of nuclear processes including transcription, chromatin remodeling, and intranuclear transport. Nevertheless, the regulation of nuclear actin by posttranslational modifications has not been investigated. We now show that nuclear actin is modified by SUMO2 and SUMO3 and that computational modeling and site-directed mutagenesis identified K68 and K284 as critical sites for SUMOylating actin. We also present a model for the actin–SUMO complex and show that SUMOylation is required for the nuclear localization of actin

    Dissolution dominating calcification process in polar pteropods close to the point of aragonite undersaturation

    Get PDF
    Thecosome pteropods are abundant upper-ocean zooplankton that build aragonite shells. Ocean acidification results in the lowering of aragonite saturation levels in the surface layers, and several incubation studies have shown that rates of calcification in these organisms decrease as a result. This study provides a weight-specific net calcification rate function for thecosome pteropods that includes both rates of dissolution and calcification over a range of plausible future aragonite saturation states (Omega_Ar). We measured gross dissolution in the pteropod Limacina helicina antarctica in the Scotia Sea (Southern Ocean) by incubating living specimens across a range of aragonite saturation states for a maximum of 14 days. Specimens started dissolving almost immediately upon exposure to undersaturated conditions (Omega_Ar,0.8), losing 1.4% of shell mass per day. The observed rate of gross dissolution was different from that predicted by rate law kinetics of aragonite dissolution, in being higher at Var levels slightly above 1 and lower at Omega_Ar levels of between 1 and 0.8. This indicates that shell mass is affected by even transitional levels of saturation, but there is, nevertheless, some partial means of protection for shells when in undersaturated conditions. A function for gross dissolution against Var derived from the present observations was compared to a function for gross calcification derived by a different study, and showed that dissolution became the dominating process even at Omega_Ar levels close to 1, with net shell growth ceasing at an Omega_Ar of 1.03. Gross dissolution increasingly dominated net change in shell mass as saturation levels decreased below 1. As well as influencing their viability, such dissolution of pteropod shells in the surface layers will result in slower sinking velocities and decreased carbon and carbonate fluxes to the deep ocean
    corecore