611 research outputs found

    An Experimental Investigation of the Scaling of Columnar Joints

    Get PDF
    Columnar jointing is a fracture pattern common in igneous rocks in which cracks self-organize into a roughly hexagonal arrangement, leaving behind an ordered colonnade. We report observations of columnar jointing in a laboratory analog system, desiccated corn starch slurries. Using measurements of moisture density, evaporation rates, and fracture advance rates as evidence, we suggest an advective-diffusive system is responsible for the rough scaling behavior of columnar joints. This theory explains the order of magnitude difference in scales between jointing in lavas and in starches. We investigated the scaling of average columnar cross-sectional areas due to the evaporation rate, the analog of the cooling rate of igneous columnar joints. We measured column areas in experiments where the evaporation rate depended on lamp height and time, in experiments where the evaporation rate was fixed using feedback methods, and in experiments where gelatin was added to vary the rheology of the starch. Our results suggest that the column area at a particular depth is related to both the current conditions, and hysteretically to the geometry of the pattern at previous depths. We argue that there exists a range of stable column scales allowed for any particular evaporation rate.Comment: 12 pages, 11 figures, for supporting online movies, go to http://www.physics.utoronto.ca/nonlinear/movies/starch_movies.htm

    Development and geometry of isotropic and directional shrinkage crack patterns

    Full text link
    We have studied shrinkage crack patterns which form when a thin layer of an alumina/water slurry dries. Both isotropic and directional drying were studied. The dynamics of the pattern formation process and the geometric properties of the isotropic crack patterns are similar to what is expected from recent models, assuming weak disorder. There is some evidence for a gradual increase in disorder as the drying layer become thinner, but no sudden transition, in contrast to what has been seen in previous experiments. The morphology of the crack patterns is influenced by drying gradients and front propagation effects, with sharp gradients having a strong orienting and ordering effect.Comment: 8 pages, 11 figures, 8 in jpg format, 3 in postscript. See also http://mobydick.physics.utoronto.ca/mud.htm

    Order and disorder in columnar joints

    Get PDF
    Columnar joints are three-dimensional fracture networks that form in cooling basalt and several other media. The network organizes itself into ordered, mostly hexagonal columns. The same pattern can be observed on a smaller scale in desiccating starch. We show how surface boundary conditions in the desiccation of starch affect the formation of columnar joints. Under constant drying power conditions, we find a power law dependence of columnar cross-sectional area with depth, while under constant drying rate conditions this coarsening is eventually halted. Discontinuous transitions in pattern scale can be observed under constant external conditions, which may prompt a reinterpretation of similar transitions found in basalt. Starch patterns are statistically similar to those found in basalt, suggesting that mature columnar jointing patterns contain inherent residual disorder, but are statistically scale invariant

    Trial protocol OPPTIMUM : does progesterone prophylaxis for the prevention of preterm labour improve outcome?

    Get PDF
    Background Preterm birth is a global problem, with a prevalence of 8 to 12% depending on location. Several large trials and systematic reviews have shown progestogens to be effective in preventing or delaying preterm birth in selected high risk women with a singleton pregnancy (including those with a short cervix or previous preterm birth). Although an improvement in short term neonatal outcomes has been shown in some trials these have not consistently been confirmed in meta-analyses. Additionally data on longer term outcomes is limited to a single trial where no difference in outcomes was demonstrated at four years of age of the child, despite those in the “progesterone” group having a lower incidence of preterm birth. Methods/Design The OPPTIMUM study is a double blind randomized placebo controlled trial to determine whether progesterone prophylaxis to prevent preterm birth has long term neonatal or infant benefit. Specifically it will study whether, in women with singleton pregnancy and at high risk of preterm labour, prophylactic vaginal natural progesterone, 200 mg daily from 22 – 34 weeks gestation, compared to placebo, improves obstetric outcome by lengthening pregnancy thus reducing the incidence of preterm delivery (before 34 weeks), improves neonatal outcome by reducing a composite of death and major morbidity, and leads to improved childhood cognitive and neurosensory outcomes at two years of age. Recruitment began in 2009 and is scheduled to close in Spring 2013. As of May 2012, over 800 women had been randomized in 60 sites. Discussion OPPTIMUM will provide further evidence on the effectiveness of vaginal progesterone for prevention of preterm birth and improvement of neonatal outcomes in selected groups of women with singleton pregnancy at high risk of preterm birth. Additionally it will determine whether any reduction in the incidence of preterm birth is accompanied by improved childhood outcome

    Clastic Polygonal Networks Around Lyot Crater, Mars: Possible Formation Mechanisms From Morphometric Analysis

    Get PDF
    Polygonal networks of patterned ground are a common feature in cold-climate environments. They can form through the thermal contraction of ice-cemented sediment (i.e. formed from fractures), or the freezing and thawing of ground ice (i.e. formed by patterns of clasts, or ground deformation). The characteristics of these landforms provide information about environmental conditions. Analogous polygonal forms have been observed on Mars leading to inferences about environmental conditions. We have identified clastic polygonal features located around Lyot crater, Mars (50°N, 30°E). These polygons are unusually large (> 100 m diameter) compared to terrestrial clastic polygons, and contain very large clasts, some of which are up to 15 metres in diameter. The polygons are distributed in a wide arc around the eastern side of Lyot crater, at a consistent distance from the crater rim. Using high-resolution imaging data, we digitised these features to extract morphological information. These data are compared to existing terrestrial and Martian polygon data to look for similarities and differences and to inform hypotheses concerning possible formation mechanisms. Our results show the clastic polygons do not have any morphometric features that indicate they are similar to terrestrial sorted, clastic polygons formed by freeze-thaw processes. They are too large, do not show the expected variation in form with slope, and have clasts that do not scale in size with polygon diameter. However, the clastic networks are similar in network morphology to thermal contraction cracks, and there is a potential direct Martian analogue in a sub-type of thermal contraction polygons located in Utopia Planitia. Based upon our observations, we reject the hypothesis that polygons located around Lyot formed as freeze-thaw polygons and instead an alternative mechanism is put forward: they result from the infilling of earlier thermal contraction cracks by wind-blown material, which then became compressed and/or cemented resulting in a resistant fill. Erosion then leads to preservation of these polygons in positive relief, while later weathering results in the fracturing of the fill material to form angular clasts. These results suggest that there was an extensive area of ice-rich terrain, the extent of which is linked to ejecta from Lyot crater
    corecore