221 research outputs found

    In The Search For Accounting Knowledge - Everything Old Is New Again

    Get PDF
    The following paper will attempt to substantiate claims that the accounting profession, has in over a hundred years, failed to adequately develop. Claims that the accounting profession has done little more than recycle financial accounting issues are not new, with such allegations having vocally surfaced in the past two decades. In order to achieve its aim, this paper will focus on Statement of Accounting Concepts number two [SAC 2], The Objective of General Purpose Financial Reporting. In gaining an understanding of today\u27 s position of SAC 2 and how it has been arrived at, legislation dating over a hundred years will be examined, concluding that the accounting profession has failed to develop. Yet most importantly this paper will conclude that the conceptual framework, the professions unique body of knowledge seems to be little more than a blatant act of plagiarism

    A giant planet shaping the disk around the very low-mass star CIDA 1

    Get PDF
    Context. Exoplanetary research has provided us with exciting discoveries of planets around very low-mass (VLM) stars (0.08 M⊙ ≲ M* ≲ 0.3 M⊙; e.g., TRAPPIST-1 and Proxima Centauri). However, current theoretical models still strive to explain planet formation in these conditions and do not predict the development of giant planets. Recent high-resolution observations from the Atacama Large Millimeter/submillimeter Array (ALMA) of the disk around CIDA 1, a VLM star in Taurus, show substructures that hint at the presence of a massive planet. Aims. We aim to reproduce the dust ring of CIDA 1, observed in the dust continuum emission in ALMA Band 7 (0.9 mm) and Band 4 (2.1 mm), along with its 12CO (J = 3−2) and 13CO (J = 3−2) channel maps, assuming the structures are shaped by the interaction of the disk with a massive planet. We seek to retrieve the mass and position of the putative planet, through a global simulation that assesses planet-disk interactions to quantitatively reproduce protoplanetary disk observations of both dust and gas emission in a self-consistent way. Methods. Using a set of hydrodynamical simulations, we model a protoplanetary disk that hosts an embedded planet with a starting mass of between 0.1 and 4.0 MJup and initially located at a distance of between 9 and 11 au from the central star. We compute the dust and gas emission using radiative transfer simulations, and, finally, we obtain the synthetic observations, treating the images as the actual ALMA observations. Results. Our models indicate that a planet with a minimum mass of ~1.4 MJup orbiting at a distance of ~9−10 au can explain the morphology and location of the observed dust ring in Band 7 and Band 4. We match the flux of the dust emission observation with a dust-to-gas mass ratio in the disk of ~10−2. We are able to reproduce the low spectral index (~2) observed where the dust ring is detected, with a ~40−50% fraction of optically thick emission. Assuming a 12CO abundance of 5 × 10−5 and a 13CO abundance 70 times lower, our synthetic images reproduce the morphology of the 12CO (J = 3−2) and 13CO (J = 3−2) observed channel maps where the cloud absorption allowed a detection. From our simulations, we estimate that a stellar mass M* = 0.2 M⊙ and a systemic velocity vsys = 6.25 km s−1 are needed to reproduce the gas rotation as retrieved from molecular line observations. Applying an empirical relation between planet mass and gap width in the dust, we predict a maximum planet mass of ~4−8 MJup. Conclusions. Our results suggest the presence of a massive planet orbiting CIDA 1, thus challenging our understanding of planet formation around VLM stars

    SEWAL: an open-source platform for next-generation sequence analysis and visualization

    Get PDF
    Next-generation DNA sequencing platforms provide exciting new possibilities for in vitro genetic analysis of functional nucleic acids. However, the size of the resulting data sets presents computational and analytical challenges. We present an open-source software package that employs a locality-sensitive hashing algorithm to enumerate all unique sequences in an entire Illumina sequencing run (∼108 sequences). The algorithm results in quasilinear time processing of entire Illumina lanes (∼107 sequences) on a desktop computer in minutes. To facilitate visual analysis of sequencing data, the software produces three-dimensional scatter plots similar in concept to Sewall Wright and John Maynard Smith’s adaptive or fitness landscape. The software also contains functions that are particularly useful for doped selections such as mutation frequency analysis, information content calculation, multivariate statistical functions (including principal component analysis), sequence distance metrics, sequence searches and sequence comparisons across multiple Illumina data sets. Source code, executable files and links to sample data sets are available at http://www.sourceforge.net/projects/sewal

    Proxima Centauri b is not a transiting exoplanet

    Full text link
    We report Spitzer Space Telescope observations during predicted transits of the exoplanet Proxima Centauri b. As the nearest terrestrial habitable-zone planet we will ever discover, any potential transit of Proxima b would place strong constraints on its radius, bulk density, and atmosphere. Subsequent transmission spectroscopy and secondary-eclipse measurements could then probe the atmospheric chemistry, physical processes, and orbit, including a search for biosignatures. However, our photometric results rule out planetary transits at the 200~ppm level at 4.5 μm~{\mu}m, yielding a 3σ\sigma upper radius limit of 0.4~R_\rm{\oplus} (Earth radii). Previous claims of possible transits from optical ground- and space-based photometry were likely correlated noise in the data from Proxima Centauri's frequent flaring. Follow-up observations should focus on planetary radio emission, phase curves, and direct imaging. Our study indicates dramatically reduced stellar activity at near-to-mid infrared wavelengths, compared to the optical. Proxima b is an ideal target for space-based infrared telescopes, if their instruments can be configured to handle Proxima's brightness.Comment: 8 pages, 3 figures, 2 tables, accepted for publication in MNRA

    Induction and decay of functional complement-fixing antibodies by the RTS,S malaria vaccine in children, and a negative impact of malaria exposure

    Get PDF
    Background: Leading malaria vaccine, RTS,S, is based on the circumsporozoite protein (CSP) of sporozoites. RTS,S confers partial protection against malaria in children, but efficacy wanes relatively quickly after primary immunization. Vaccine efficacy has some association with anti-CSP IgG; however, it is unclear how these antibodies function, and how functional antibodies are induced and maintained over time. Recent studies identified antibodycomplement interactions as a potentially important immune mechanism against sporozoites. Here, we investigated whether RTS,S vaccine-induced antibodies could function by interacting with complement. Methods: Serum samples were selected from children in a phase IIb trial of RTS,S/AS02A conducted at two study sites of high and low malaria transmission intensity in Manhiça, Mozambique. Samples following primary immunization and 5-year post-immunization follow-up time points were included. Vaccine-induced antibodies were characterized by isotype, subclass, and epitope specificity, and tested for the ability to fix and activate complement. We additionally developed statistical methods to model the decay and determinants of functional antibodies after vaccination. Results: RTS,S vaccination induced anti-CSP antibodies that were mostly IgG1, with some IgG3, IgG2, and IgM. Complement-fixing antibodies were effectively induced by vaccination, and targeted the central repeat and Cterminal regions of CSP. Higher levels of complement-fixing antibodies were associated with IgG that equally recognized both the central repeat and C-terminal regions of CSP. Older age and higher malaria exposure were significantly associated with a poorer induction of functional antibodies. There was a marked decay in functional complement-fixing antibodies within months after vaccination, as well as decays in IgG subclasses and IgM. Statistical modeling suggested the decay in complement-fixing antibodies was mostly attributed to the waning of anti-CSP IgG1, and to a lesser extent IgG3. Conclusions: We demonstrate for the first time that RTS,S can induce complement-fixing antibodies in young malaria-exposed children. The short-lived nature of functional responses mirrors the declining vaccine efficacy of RTS,S over time. The negative influence of age and malaria exposure on functional antibodies has implications for understanding vaccine efficacy in different settings. These findings provide insights into the mechanisms and longevity of vaccine-induced immunity that will help inform the future development of highly efficacious and longlasting malaria vaccines

    A Circumplanetary Disk around PDS70c

    Get PDF
    International audiencePDS 70 is a unique system in which two protoplanets, PDS 70 b and c, have been discovered within the dust-depleted cavity of their disk, at ~22 and 34 au, respectively, by direct imaging at infrared wavelengths. Subsequent detection of the planets in the Hα line indicates that they are still accreting material through circumplanetary disks. In this Letter, we present new Atacama Large Millimeter/submillimeter Array (ALMA) observations of the dust continuum emission at 855 μm at high angular resolution (~20 mas, 2.3 au) that aim to resolve the circumplanetary disks and constrain their dust masses. Our observations confirm the presence of a compact source of emission co-located with PDS 70 c, spatially separated from the circumstellar disk and less extended than ~1.2 au in radius, a value close to the expected truncation radius of the circumplanetary disk at a third of the Hill radius. The emission around PDS 70 c has a peak intensity of ~86 ± 16 μJy beam-1, which corresponds to a dust mass of ~0.031 M⊕ or ~0.007 M⊕, assuming that it is only constituted of 1 μm or 1 mm sized grains, respectively. We also detect extended, low surface brightness continuum emission within the cavity near PDS 70 b. We observe an optically thin inner disk within 18 au of the star with an emission that could result from small micron-sized grains transported from the outer disk through the orbits of b and c. In addition, we find that the outer disk resolves into a narrow and bright ring with a faint inner shoulder

    The SPHERE view of three interacting twin disc systems in polarized light

    Get PDF
    Dense stellar environments as hosts of ongoing star formation increase the probability of gravitational encounters among stellar systems during the early stages of evolution. Stellar interaction may occur through non-recurring, hyperbolic, or parabolic passages (a so-called 'fly-by'), through secular binary evolution, or through binary capture. In all three scenarios, the strong gravitational perturbation is expected to manifest itself in the disc structures around the individual stars. Here, we present near-infrared polarized light observations that were taken with the SPHERE/IRDIS instrument of three known interacting twin-disc systems: AS 205, EM∗ SR 24, and FU Orionis. The scattered light exposes spirals likely caused by the gravitational interaction. On a larger scale, we observe connecting filaments between the stars. We analyse their very complex polarized intensity and put particular attention to the presence of multiple light sources in these systems. The local angle of linear polarization indicates the source whose light dominates the scattering process from the bridging region between the two stars. Further, we show that the polarized intensity from scattering with multiple relevant light sources results from an incoherent summation of the individuals' contribution. This can produce nulls of polarized intensity in an image, as potentially observed in AS 205. We discuss the geometry and content of the systems by comparing the polarized light observations with other data at similar resolution, namely with ALMA continuum and gas emission. Collective observational data can constrain the systems' geometry and stellar trajectories, with the important potential to differentiate between dynamical scenarios of stellar interaction

    Identification and mitigation of a vibrational telescope systematic with application to spitzer

    Get PDF
    We observed Proxima Centauri with the Spitzer Space Telescope Infrared Array Camera five times in 2016 and 2017 to search for transits of Proxima Centauri b. Following standard analysis procedures, we found three asymmetric, transit-like events that are now understood to be vibrational systematics. This systematic is correlated with the width of the point-response function (PRF), which we measure with rotated and nonrotated-Gaussian fits with respect to the detector array. We show that the systematic can be removed with a novel application of an adaptive elliptical-aperture photometry technique, and compare the performance of this technique with fixed and variable circular-aperture photometry, using both BiLinearly Interpolated Subpixel Sensitivity (BLISS) maps and nonbinned Pixel-Level Decorrelation (PLD). With BLISS maps, elliptical photometry results in a lower standard deviation of normalized residuals, and reduced or similar correlated noise when compared to circular apertures. PLD prefers variable, circular apertures, but generally results in more correlated noise than BLISS. This vibrational effect is likely present in other telescopes and Spitzer observations, where correction could improve results. Our elliptical apertures can be applied to any photometry observations, and may be even more effective when applied to more circular PRFs than Spitzer's.The authors acknowledge support from the following: CATA-Basal/Chile PB06 Conicyt and Fondecyt/Chile project #1161218 (J.S.J.). Spanish MINECO programs AYA2016-79245-C03-03-P, ESP2017-87676-C05-02-R (E.R.), ESP2016-80435-C2-2-R (E.P.) and through the “Centre of Excellence Severo Ochoa” award SEV-2017-0709 (P.J.A.,C.R.-L., E.R.). STFC Consolidated Grant ST/P000592/1 (G.A.E.). NASA Planetary Atmospheres Program grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G (R.C., J.H., K.M., M.H.). Spanish Ministry of Science, Innovation and Universities and the Fondo Europeo de Desarrollo Regional (FEDER) through grant ESP2016-80435-C2-1-R and PGC2018-098153-B-C33 (I.R.)

    A high-throughput behavioral paradigm for Drosophila olfaction - The Flywalk

    Get PDF
    How can odor-guided behavior of numerous individual Drosophila be assessed automatically with high temporal resolution? For this purpose we introduce the automatic integrated tracking and odor-delivery system Flywalk. In fifteen aligned small wind tunnels individual flies are exposed to repeated odor pulses, well defined in concentration and timing. The flies' positions are visually tracked, which allows quantification of the odor-evoked walking behavior with high temporal resolution of up to 100 ms. As a demonstration of Flywalk we show that the flies' behavior is odorant-specific; attractive odors elicit directed upwind movements, while repellent odors evoke decreased activity, followed by downwind movements. These changes in behavior differ between sexes. Furthermore our findings show that flies can evaluate the sex of a conspecific and males can determine a female's mating status based on olfactory cues. Consequently, Flywalk allows automatic screening of individual flies for their olfactory preference and sensitivity
    corecore