13 research outputs found

    Changes in viral protein function that accompany retroviral endogenization

    No full text
    Endogenous retroviruses (ERVs) are the remnants of ancient retroviral infections of germ cells and have been maintained in whole or part as heritable genomic elements. The last known endogenization events occurred several million years ago, and therefore stepwise analysis of retroviral endogenization has not been possible. A unique opportunity to study this process became available when a full-length ERV isolated from koalas (KoRV) was shown to have integrated into their germ line within the past 100 years. Even though KoRV shares 78% nucleotide identity with the exogenous and highly infectious gibbon ape leukemia virus (GALV), the infectivity of KoRV, like that of other ERVs, is substantially lower than that of GALV. Differences in the protein coding regions of KoRV that distinguish it from GALV were introduced into the GALV genome, and their functional consequences were assessed. We identified a KoRV gagpol L domain mutation as well as five residues present in the KoRV envelope (env) that, when substituted for the corresponding residues of GALV, resulted in vectors exhibiting substantially reduced titers similar to those observed with KoRV vectors. In addition, KoRV env protein lacks an intact CETTG motif that we have identified as invariant among highly infectious gammaretroviruses. Disruption of this motif in GALV results in vectors with reduced syncytia forming capabilities. Functional assessment of specific sequences that contribute to KoRV's attenuation from a highly infectious GALV-like progenitor virus has allowed the identification of specific modifications in the KoRV genome that correlate with its endogenization

    Applications of glycosaminoglycans in the medical, veterinary, pharmaceutical and cosmetic fields

    No full text
    Glycosaminoglycans (GAGs) are complex polysaccharides ubiquitously present in the extracellular matrix of mammalian tissues, where they constitute the gelatinous material responsible of maintaining the cells together, in an intimate association with a variety of proteins. Although their structures are not strictly regular, they are composed of a repeating unit of a hexosamine-containing disaccharide. Most of them possess uronic acid residues and, with the exception of hyaluronic acid, they also carry sulfate groups. As a consequence of their high negative charge, they have an extraordinary capacity to absorb water. GAGs participate in many relevant biological processes by interaction with a plethora of proteins, and thus, a large number of applications in different fields have been conceived for GAGs and their derivatives.Fil: Kovensky, Jose Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones en Hidratos de Carbono; Argentina. Université de Picardie Jules Verne; Francia. Centre National de la Recherche Scientifique; FranciaFil: Grand, Eric. Université de Picardie Jules Verne; Francia. Centre National de la Recherche Scientifique; FranciaFil: Uhrig, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones en Hidratos de Carbono; Argentin
    corecore