81 research outputs found
On the hardness of switching to a small number of edges
Seidel's switching is a graph operation which makes a given vertex adjacent
to precisely those vertices to which it was non-adjacent before, while keeping
the rest of the graph unchanged. Two graphs are called switching-equivalent if
one can be made isomorphic to the other one by a sequence of switches.
Jel\'inkov\'a et al. [DMTCS 13, no. 2, 2011] presented a proof that it is
NP-complete to decide if the input graph can be switched to contain at most a
given number of edges. There turns out to be a flaw in their proof. We present
a correct proof.
Furthermore, we prove that the problem remains NP-complete even when
restricted to graphs whose density is bounded from above by an arbitrary fixed
constant. This partially answers a question of Matou\v{s}ek and Wagner
[Discrete Comput. Geom. 52, no. 1, 2014].Comment: 19 pages, 7 figures. An extended abstract submitted to COCOON 201
Advances on Testing C-Planarity of Embedded Flat Clustered Graphs
We show a polynomial-time algorithm for testing c-planarity of embedded flat
clustered graphs with at most two vertices per cluster on each face.Comment: Accepted at GD '1
Impact of p38 mitogen-activated protein kinase inhibition on immunostimulatory properties of human 6-sulfo LacNAc dendritic cells
p38 Mitogen-activated protein kinase (MAPK) plays a crucial role in the induction and regulation of innate and adaptive immunity. Furthermore, p38 MAPK can promote tumor invasion, metastasis, and angiogenesis. Based on these properties, p38 MAPK inhibitors emerged as interesting candidates for the treatment of immune-mediated disorders and cancer. However, the majority of p38 MAPK inhibitor-based clinical trials failed due to poor efficacy or toxicity. Further studies investigating the influence of p38 MAPK inhibitors on immunomodulatory capabilities of human immune cells may improve their therapeutic potential. Here, we explored the impact of the p38 MAPK inhibitor SB203580 on the pro-inflammatory properties of native human 6-sulfo LacNAc dendritic cells (slanDCs). SB203580 did not modulate maturation of slanDCs and their capacity to promote T-cell proliferation. However, SB203580 significantly reduced the production of pro-inflammatory cytokines by activated slanDCs. Moreover, inhibition of p38 MAPK impaired the ability of slanDCs to differentiate naĂŻve CD4(+) T cells into T helper 1 cells and to stimulate interferon-Îł secretion by natural killer cells. These results provide evidence that SB203580 significantly inhibits various important immunostimulatory properties of slanDCs. This may have implications for the design of p38 MAPK inhibitor-based treatment strategies for immune-mediated disorders and cancer
Role of oxygen exposure on the differentiation of human induced pluripotent stem cells in 2D and 3D cardiac organoids
Introduction Human induced pluripotent stem cells (hiPSC) have the ability to differentiate theoritically into any cell type. The development of organoid systems exhibiting the essential features of human organ such as liver and heart is of high interest. Optimizing the culture conditions to obtain the highest cardiac organoids efficacy is crucial. In fact, cardiac differentiation protocols have been established by essentially focusing on specific growth factors on hiPSC differentiation efficiency. However, the optimal environmental factors such as the optimal oxygen exposure to obtain cardiac myocytes in network are still unclear. The mesoderm germ layer differentiation is known to be enhanced by low oxygen exposure. Yet, the effect of low oxygen exposure on the molecular and functional maturity of the hiPSC-derived cardiomyocytes remains unexplored. Aims We aimed here at comparing the molecular and functional consequences of low (5% O2 or LOE) and high oxygen exposure (21% O2 or HOE) on cardiac differentiation of hiPSCs in 2D monolayer and 3D organoids protocols. Methods hiPSC-CMs were differentiated through both the 2D (monolayer) and 3D (embryoid body) protocols using several lines. Cardiac marker expression and cell morphology were assessed using qRT-PCR and immunofluorescence. The mitochondrial localization and metabolic properties were evaluated by high-resolution respirometry and mitochondrial staining. The intracellular Ca2+ handling and contractile properties were also monitored using confocal fluorescent microscopy and atomic force microscopy. Results Our results indicated that the 2D cardiac monolayer can only be differentiated in HOE. The 3D cardiac organoids containing hiPSC-CMs in LOE exhibited higher cardiac markers expression such as troponin T (TnTc), RyR2, Serca2a, alpha and beta heavy myosin chains. Moreover, we found enhanced contractile force, hypertrophy and steadier SR Ca2+ release reflected by a more regular spontaneous Ca2+ transients associated with a higher maximal amplitude and lower spontaneous Ca2+ events revealing a better SR Ca2+ handling in LOE. Similar beat rate, preserved distribution of mitochondria and similar oxygen consumption by the mitochondrial respiratory chain complexes were also observed. Conclusions Our results brought evidences that LOE is moderately beneficial for the 3D cardiac organoids with hPSC-CMs exhibiting further maturity. In contrast, the 2D cardiac monolayers strictly require HOE.Introduction Human induced pluripotent stem cells (hiPSC) have the ability to differentiate theoritically into any cell type. The development of organoid systems exhibiting the essential features of human organ such as liver and heart is of high interest. Optimizing the culture conditions to obtain the highest cardiac organoids efficacy is crucial. In fact, cardiac differentiation protocols have been established by essentially focusing on specific growth factors on hiPSC differentiation efficiency. However, the optimal environmental factors such as the optimal oxygen exposure to obtain cardiac myocytes in network are still unclear. The mesoderm germ layer differentiation is known to be enhanced by low oxygen exposure. Yet, the effect of low oxygen exposure on the molecular and functional maturity of the hiPSC-derived cardiomyocytes remains unexplored. Aims We aimed here at comparing the molecular and functional consequences of low (5% O2 or LOE) and high oxygen exposure (21% O2 or HOE) on cardiac differentiation of hiPSCs in 2D monolayer and 3D organoids protocols. Methods hiPSC-CMs were differentiated through both the 2D (monolayer) and 3D (embryoid body) protocols using several lines. Cardiac marker expression and cell morphology were assessed using qRT-PCR and immunofluorescence. The mitochondrial localization and metabolic properties were evaluated by high-resolution respirometry and mitochondrial staining. The intracellular Ca2+ handling and contractile properties were also monitored using confocal fluorescent microscopy and atomic force microscopy. Results Our results indicated that the 2D cardiac monolayer can only be differentiated in HOE. The 3D cardiac organoids containing hiPSC-CMs in LOE exhibited higher cardiac markers expression such as troponin T (TnTc), RyR2, Serca2a, alpha and beta heavy myosin chains. Moreover, we found enhanced contractile force, hypertrophy and steadier SR Ca2+ release reflected by a more regular spontaneous Ca2+ transients associated with a higher maximal amplitude and lower spontaneous Ca2+ events revealing a better SR Ca2+ handling in LOE. Similar beat rate, preserved distribution of mitochondria and similar oxygen consumption by the mitochondrial respiratory chain complexes were also observed. Conclusions Our results brought evidences that LOE is moderately beneficial for the 3D cardiac organoids with hPSC-CMs exhibiting further maturity. In contrast, the 2D cardiac monolayers strictly require HOE
Bifidobacterium longum CECT 7347 Modulates Immune Responses in a Gliadin-Induced Enteropathy Animal Model
Coeliac disease (CD) is an autoimmune disorder triggered by gluten proteins (gliadin) that involves innate and adaptive immunity. In this study, we hypothesise that the administration of Bifidobacterium longum CECT 7347, previously selected for reducing gliadin immunotoxic effects in vitro, could exert protective effects in an animal model of gliadin-induced enteropathy. The effects of this bacterium were evaluated in newborn rats fed gliadin alone or sensitised with interferon (IFN)-Îł and fed gliadin. Jejunal tissue sections were collected for histological, NFÎşB mRNA expression and cytokine production analyses. Leukocyte populations and T-cell subsets were analysed in peripheral blood samples. The possible translocation of the bacterium to different organs was determined by plate counting and the composition of the colonic microbiota was quantified by real-time PCR. Feeding gliadin alone reduced enterocyte height and peripheral CD4+ cells, but increased CD4+/Foxp3+ T and CD8+ cells, while the simultaneous administration of B. longum CECT 7347 exerted opposite effects. Animals sensitised with IFN-Îł and fed gliadin showed high cellular infiltration, reduced villi width and enterocyte height. Sensitised animals also exhibited increased NFÎşB mRNA expression and TNF-Îą production in tissue sections. B. longum CECT 7347 administration increased NFÎşB expression and IL-10, but reduced TNF-Îą, production in the enteropathy model. In sensitised gliadin-fed animals, CD4+, CD4+/Foxp3+ and CD8+ T cells increased, whereas the administration of B. longum CECT 7347 reduced CD4+ and CD4+/Foxp3+ cell populations and increased CD8+ T cell populations. The bifidobacterial strain administered represented between 75â95% of the total bifidobacteria isolated from all treated groups, and translocation to organs was not detected. These findings indicate that B. longum attenuates the production of inflammatory cytokines and the CD4+ T-cell mediated immune response in an animal model of gliadin-induced enteropathy
Spectrum of gluten-related disorders: consensus on new nomenclature and classification
A decade ago celiac disease was considered extremely rare outside Europe and, therefore, was almost completely ignored by health care professionals. In only 10 years, key milestones have moved celiac disease from obscurity into the popular spotlight worldwide. Now we are observing another interesting phenomenon that is generating great confusion among health care professionals. The number of individuals embracing a gluten-free diet (GFD) appears much higher than the projected number of celiac disease patients, fueling a global market of gluten-free products approaching $2.5 billion (US) in global sales in 2010. This trend is supported by the notion that, along with celiac disease, other conditions related to the ingestion of gluten have emerged as health care concerns. This review will summarize our current knowledge about the three main forms of gluten reactions: allergic (wheat allergy), autoimmune (celiac disease, dermatitis herpetiformis and gluten ataxia) and possibly immune-mediated (gluten sensitivity), and also outline pathogenic, clinical and epidemiological differences and propose new nomenclature and classifications
- âŚ