472 research outputs found

    Coexisting Cardiac and Hematologic Disorders.

    Get PDF
    Patients with concomitant cardiac and hematologic disorders presenting for noncardiac surgery are challenging. Anemic patients with cardiac disease should be approached in a methodical fashion. Transfusion triggers and target should be based on underlying symptomatology. The approach to anticoagulation management in patients with artificial heart valves, cardiac devices, or severe heart failure in the operative setting must encompass a complete understanding of the rationale of a patient\u27s therapy as well as calculate the risk of changing this regimen. This article focuses common disorders and discusses strategies to optimize care in patients with coexisting cardiac and hematologic disease

    Hierarchy of stratigraphic forcing: Example from Middle Pennsylvanian shelf carbonates of the Paradox basin

    Get PDF
    Middle Pennsylvanian (Desmoinesian) shelf carbonates in the southwestern Paradox basin display three superimposed orders of stratigraphic cyclicity with a systematic vertical succession of facies, cycle, and sequence stacking patterns. Fifth-order cycles [34 cycles in a 645-ft (197-m) section; average 20 ft (6.1 m) thick; mean period 29,000 years] are grouped into fourth-order sequences [average 100 ft (30 m) thick; mean period 257,000 years], which in turn stack vertically to define a third-order sequence [650+ ft (200+ m) thick; 2-3 m.y. duration]. Fifth-order cycles are composed of shallow ing-upward packages of predominantly subtidal shelf carbonates with sharp cycle boundaries (either exposure or flooding surfaces). Fifth-order cycles are packaged into fourth-order sequences bounded by regionally correlative subaerial exposure surfaces. These type 1 sequences contain a downdip, restricted lowstand wedge of evaporites and quartz clastics in topographic lows on the Paradox shelf (intrashelf depressions). The lowstand systems tract is overlain by a regionally correlative transgressive shaly mudstone (condensed section) and a highstand systems tract composed of thinning-upward, aggradational fifth-order cycles. Systematic variation in the thickness of fourth-order sequences (thinning upward followed by thickening upward) and systematic variations in the number of fifth-order cycles and fourth-order sequences (decreasing followed by increasing number) defines a third-order accommodation trend that is also regionally correlative. High-frequency cycles and sequences are interpreted as predominantly aggradational allocycles generated in response to composite fourth- and fifth-order glacio-eustatic sea-level fluctuations. Two different orbital forcing (Milankovitch) scenarios are evaluated to explain the composite stratigraphic cyclicity of the Paradox sequences, each of which is plausible given Desmoinesian age estimates. The cycle, sequence, and facies stacking patterns have been replicated by means of computer modeling by superimposing composite high-frequency glacio-eustasy atop regional subsidence using depth-dependent, sedimentation

    Hierarchy of stratigraphic forcing: Example from Middle Pennsylvanian shelf carbonates of the Paradox basin

    Get PDF
    Middle Pennsylvanian (Desmoinesian) shelf carbonates in the southwestern Paradox basin display three superimposed orders of stratigraphic cyclicity with a systematic vertical succession of facies, cycle, and sequence stacking patterns. Fifth-order cycles [34 cycles in a 645-ft (197-m) section; average 20 ft (6.1 m) thick; mean period 29,000 years] are grouped into fourth-order sequences [average 100 ft (30 m) thick; mean period 257,000 years], which in turn stack vertically to define a third-order sequence [650+ ft (200+ m) thick; 2-3 m.y. duration]. Fifth-order cycles are composed of shallow ing-upward packages of predominantly subtidal shelf carbonates with sharp cycle boundaries (either exposure or flooding surfaces). Fifth-order cycles are packaged into fourth-order sequences bounded by regionally correlative subaerial exposure surfaces. These type 1 sequences contain a downdip, restricted lowstand wedge of evaporites and quartz clastics in topographic lows on the Paradox shelf (intrashelf depressions). The lowstand systems tract is overlain by a regionally correlative transgressive shaly mudstone (condensed section) and a highstand systems tract composed of thinning-upward, aggradational fifth-order cycles. Systematic variation in the thickness of fourth-order sequences (thinning upward followed by thickening upward) and systematic variations in the number of fifth-order cycles and fourth-order sequences (decreasing followed by increasing number) defines a third-order accommodation trend that is also regionally correlative. High-frequency cycles and sequences are interpreted as predominantly aggradational allocycles generated in response to composite fourth- and fifth-order glacio-eustatic sea-level fluctuations. Two different orbital forcing (Milankovitch) scenarios are evaluated to explain the composite stratigraphic cyclicity of the Paradox sequences, each of which is plausible given Desmoinesian age estimates. The cycle, sequence, and facies stacking patterns have been replicated by means of computer modeling by superimposing composite high-frequency glacio-eustasy atop regional subsidence using depth-dependent, sedimentation

    Universal description of S-wave meson spectra in a renormalized light-cone QCD-inspired model

    Full text link
    A light-cone QCD-inspired model, with the mass squared operator consisting of a harmonic oscillator potential as confinement and a Dirac-delta interaction, is used to study the S-wave meson spectra. The two parameters of the harmonic potential and quark masses are fixed by masses of rho(770), rho(1450), J/psi, psi(2S), K*(892) and B*. We apply a renormalization method to define the model, in which the pseudo-scalar ground state mass fixes the renormalized strength of the Dirac-delta interaction. The model presents an universal and satisfactory description of both singlet and triplet states of S-wave mesons and the corresponding radial excitations.Comment: RevTeX, 17 pages, 7 eps figures, to be published in Phys. Rev.

    Bacterially mediated removal of phosphorus and cycling of nitrate and sulfate in the waste stream of a "zero-discharge" recirculating mariculture system

    Get PDF
    Simultaneous removal of nitrogen and phosphorus by microbial biofilters has been used in a variety of water treatment systems including treatment systems in aquaculture. In this study, phosphorus, nitrate and sulfate cycling in the anaerobic loop of a zero-discharge, recirculating mariculture system was investigated using detailed geochemical measurements in the sludge layer of the digestion basin. High concentrations of nitrate and sulfate, circulating in the overlying water (~15 mM), were removed by microbial respiration in the sludge resulting in a sulfide accumulation of up to 3 mM. Modelling of the observed S and O isotopic ratios in the surface sludge suggested that, with time, major respiration processes shifted from heterotrophic nitrate and sulfate reduction to autotrophic nitrate reduction. The much higher inorganic P content of the sludge relative to the fish feces is attributed to conversion of organic P to authigenic apatite. This conclusion is supported by: (a) X-ray diffraction analyses, which pointed to an accumulation of a calcium phosphate mineral phase that was different from P phases found in the feces, (b) the calculation that the pore waters of the sludge were highly oversaturated with respect to hydroxyapatite (saturation index = 4.87) and (c) there was a decrease in phosphate (and in the Ca/Na molar ratio) in the pore waters simultaneous with an increase in ammonia showing there had to be an additional P removal process at the same time as the heterotrophic breakdown of organic matter

    Nature of the metal-nonmetal transition in metal-ammonia solutions. I. Solvated electrons at low metal concentrations

    Full text link
    Using a theory of polarizable fluids, we extend a variational treatment of an excess electron to the many-electron case corresponding to finite metal concentrations in metal-ammonia solutions (MAS). We evaluate dielectric, optical, and thermodynamical properties of MAS at low metal concentrations. Our semi-analytical calculations based on a mean-spherical approximation correlate well with the experimental data on the concentration and the temperature dependencies of the dielectric constant and the optical absorption spectrum. The properties are found to be mainly determined by the induced dipolar interactions between localized solvated electrons, which result in the two main effects: the dispersion attractions between the electrons and a sharp increase in the static dielectric constant of the solution. The first effect provides a classical phase separation for the light alkali metal solutes (Li, Na, K) below a critical temperature. The second effect leads to a dielectric instability, i.e., polarization catastrophe, which is the onset of metallization. The locus of the calculated critical concentrations is in a good agreement with the experimental phase diagram of Na-NH3 solutions. The proposed mechanism of the metal-nonmetal transition is quite general and may occur in systems involving self-trapped quantum quasiparticles.Comment: 13 figures, 42 page

    High Pressure Insulator-Metal Transition in Molecular Fluid Oxygen

    Full text link
    We report the first experimental evidence for a metallic phase in fluid molecular oxygen. Our electrical conductivity measurements of fluid oxygen under dynamic quasi-isentropic compression show that a non-metal/metal transition occurs at 3.4 fold compression, 4500 K and 1.2 Mbar. We discuss the main features of the electrical conductivity dependence on density and temperature and give an interpretation of the nature of the electrical transport mechanisms in fluid oxygen at these extreme conditions.Comment: RevTeX, 4 figure

    Earliest Triassic microbialites in the South China Block and other areas; controls on their growth and distribution

    Get PDF
    Earliest Triassic microbialites (ETMs) and inorganic carbonate crystal fans formed after the end-Permian mass extinction (ca. 251.4 Ma) within the basal Triassic Hindeodus parvus conodont zone. ETMs are distinguished from rarer, and more regional, subsequent Triassic microbialites. Large differences in ETMs between northern and southern areas of the South China block suggest geographic provinces, and ETMs are most abundant throughout the equatorial Tethys Ocean with further geographic variation. ETMs occur in shallow-marine shelves in a superanoxic stratified ocean and form the only widespread Phanerozoic microbialites with structures similar to those of the Cambro-Ordovician, and briefly after the latest Ordovician, Late Silurian and Late Devonian extinctions. ETMs disappeared long before the mid-Triassic biotic recovery, but it is not clear why, if they are interpreted as disaster taxa. In general, ETM occurrence suggests that microbially mediated calcification occurred where upwelled carbonate-rich anoxic waters mixed with warm aerated surface waters, forming regional dysoxia, so that extreme carbonate supersaturation and dysoxic conditions were both required for their growth. Long-term oceanic and atmospheric changes may have contributed to a trigger for ETM formation. In equatorial western Pangea, the earliest microbialites are late Early Triassic, but it is possible that ETMs could exist in western Pangea, if well-preserved earliest Triassic facies are discovered in future work

    Up, close and personal: the new Front National visual strategy under Marine Le Pen

    Get PDF
    Extensive analyses of Marine Le Pen’s media interventions as leader of the French Front National have revealed mostly rhetorical differences from her father’s discourse. In particular, despite Marine Le Pen’s professed openness toward women and their policy concerns, and despite her professed intention to transform the FN into party suitable for government, there has been little progress in these directions. However, the FN’s visual discourse has been all but ignored by the scholarly analysis, despite the fact that campaign visuals encode significant social and political information. This paper finds that the FN candidates’ visual presentation has undergone major transformations from the 2007 to the 2012 legislative elections. Specifically FN candidates in 2012 are more likely to visually portray themselves like mainstream party candidates. Compared to the 2007 elections, women candidates, in particular, were more likely to visually promote their personal qualities in 2012, in some respects more than 2012 men candidates
    • …
    corecore