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Abstract 12 

Hierarchies of cyclicity have been described from a wide variety of carbonate platform strata, and 13 

are assumed to be a consequence of Milkanvotich-forced variations in accommodation, although 14 

descriptions of hierarchical strata, including ‘cycles’ and what they constitute, are typically 15 

qualitative, subjective, and in some cases difficult to reproduce. One reason for this is the lack of any 16 

detailed definition of what constitutes a hierarchy, as well as the implicit and largely untested 17 

nature of the assumptions underpinning most interpretations of hierarchical strata.  18 

In this study we aim to investigate the response of depositional systems if they were to behave in 19 

the way implied by sequence stratigraphic (hierarchical) models, to clearly state the assumptions of 20 

these models and illustrate the consequences of these assumptions when they are employed in a 21 

simple, internally-consistent forward model with plausible parameters. 22 

We define hierarchies, in both the time-domain (chronostratigraphic) and thickness-domain 23 

(stratigraphic), as two or more high-frequency sequences in which there exists a repeated trend of 24 



decreasing high-frequency sequence (HFS) thickness such that within a single low-frequency 25 

sequence (LFS) each high-frequency sequence is thinner than the previous sequence. 26 

Based on this definition, results from 110,000 numerical model runs suggest that ordered forcing 27 

via cyclical eustatic sea-level oscillations rarely results in an easily identifiable hierarchy of stacked 28 

cycles. Hierarchies measured in the chronostratigraphic time-domain occur in only 9% of model 29 

run cases, and in 15% of cases when measured in the thickness-domain, suggesting that vertical 30 

thickness trends are probably not a useful way to identify products of ordered periodic external 31 

forcing. Variability in relative forcing periodicity results in significant variation in both HFS and LFS 32 

thickness trends making accurate identification of hierarchy and any forcing controls from 33 

thickness data alone very difficult. Comparison between model results and outcrop sections 34 

suggests that hierarchies are often assumed to be present despite a lack of adequate supporting 35 

evidence and quantitative analysis of these sections suggests that they are not hierarchical in any 36 

meaningful sense. 37 

Introduction 38 

Platform carbonates are important recorders of climatic and tectonic history and form hydrocarbon 39 

reservoirs in many basins (e.g. Saller et al. 1994). During ice-house periods of global climate 40 

platform interior strata are typically characterised by stacked high-frequency sequences (HFSs) 41 

that often show clear evidence for high-frequency high-amplitude relative sea-level oscillations 42 

(Goldhammer et al. 1990). HFSs deposited during ice-house periods are typically defined as a 43 

shallowing-upward sequence of sub-tidal strata capped by sub-aerial exposure (Rankey 2004). 44 

Individual HFSs are interpreted as ‘stacking’ into thicker low-frequency sequences (LFSs). LFSs are 45 

themselves therefore unconformity bounded packages of strata, following the standard definition of 46 

sequence, and are often identified by a vertical trend of decreasing HFS thickness (e.g. Lehrmann 47 

and Goldhammer 1999; Kenter et al. 2006). These trends, based on variations of facies and 48 

thickness, form the basis for identification of a hierarchy of stacked cycles or sequences (Figure 1). 49 

Sedimentary hierarchies are potentially important because, if present, they allow systematic 50 

subdivision of strata and also because implicit in hierarchy interpretation is an assumption that it 51 

was generated by an ordered forcing-mechanism. The control is typically assumed to be periodic 52 

variations in accommodation usually attributed to climate variations resulting from Milankovitch-53 

scale orbital variations (e.g. Cozzi et al. 2005; Schwarzacher 2005; Algeo and Hinnov 2006), which 54 



vary global sea-level primarily by dictating the amount of water stored as continental ice. The 55 

accommodation changes are therefore inferred to be periodic creating a sedimentary hierarchy via 56 

interaction of various wavelengths of Milankovitch oscillations (for a review see de Boer and Smith 57 

1994). Hierarchies also have additional implications related to order and completeness of the 58 

stratigraphic record, the assumption being that since an ordered forcing mechanism is present in 59 

the climate system the stratigraphic record preserves this signal with sufficient fidelity and without 60 

significant loss so as to be recognizable. This signal is demonstrably recorded in deep marine 61 

settings which undergo almost continuous pelagic sedimentation (e.g. Zachos et al. 2001) but less 62 

obvious in shallow marine settings which contain presumably significant periods hiatus (as much 63 

as 80% of the total depositional period; Barnett et al., 2002). 64 

Despite being such a potentially useful concept and approach, a critical problem with interpretation 65 

of sedimentary hierarchies to date is the lack of an agreed, detailed definition for the term. A lack of 66 

a rigorous definition allows interpretation of hierarchical strata without sufficient evidence to 67 

support the resulting conclusions about controlling factors (e.g. Kerans et al. 1994), makes 68 

objective comparison of proposed examples more difficult, and limits the degree to which 69 

hierarchies can be understood. 70 

In this study we aim to investigate the response of depositional systems if they were to behave in 71 

the way implied by sequence stratigraphic (hierarchical) models, to clearly state the assumptions of 72 

these models and illustrate the consequences of these assumptions when they are employed in an 73 

internally-consistent forward model with plausible parameters. We also critically examine the 74 

conditions necessary to generate a sedimentary hierarchy and propose a definition for the term as 75 

well as a new objective method for quantifying the degree of hierarchy displayed in a sedimentary 76 

section. We apply this method to both numerical models of carbonate accumulation and outcrop 77 

data in order to determine the likely frequency of occurrence of hierarchical strata in the ancient 78 

record, and use this analysis to comment on fidelity of carbonate platform strata as a recorder of 79 

external forcing. 80 

Previous definitions of sedimentary hierarchies 81 

Strata can be interpreted to be hierarchical despite the lack of a clear definition, although only in a 82 

subjective and qualitative way.  Different qualitative definitions implied by various authors prevent 83 

consensus, decrease reproducibility and inhibit testing for presence of hierarchical strata (cf. 84 

Goldhammer et al. 1991; Drummond and Wilkinson 1993a; Lerat et al. 2000). For example, two 85 

distinct sedimentary hierarchies were described from the same sedimentary sections (in the 86 



Paradox Basin, southeastern Utah) by Goldhammer et al. (1991) and Lerat et al. (2000) but differ 87 

significantly. In order to establish a “cycle hierarchy”, Lerat et al. state that the criteria rest not on 88 

thickness but on the “extent of changes in the depositional environments recorded within a cycle” 89 

and “the importance of the cycle bounding surfaces in regional correlations” (Lerat et al. 2000; 90 

p78). Following from this they state that a “5th-order cycle” or “genetic unit” is defined by a “cyclic 91 

but minor change in bathymetry or accommodation as deduced from facies”, and is “the expression 92 

of a short term cyclic variation of relative sea-level”. “4th-order sequences”, in contrast, are said to 93 

represent “major changes in bathymetry or accommodation”. There are numerous problems with 94 

these interpretations given the possibility of complex and incomplete strata (Burgess and Wright 95 

2003; Rankey 2004; Burgess 2006), the lack of strong evidence for ordered strata in many cases 96 

(Drummond and Wilkinson 1996; Wilkinson et al. 1996; Wilkinson et al. 1997; Wilkinson et al. 97 

1998), and the evidence against simple lithology and depth relations for shallow-water facies 98 

(Rankey 2004). The uncertainty in using “minor bathymetric changes” to define cycle boundaries is 99 

therefore clearly problematic and boundaries of a HFS should therefore only be interpreted where 100 

there is unambiguous evidence of change in relative sea-level. In shallow-marine settings, due to 101 

non-unique facies-depth relations this dictates the use of sub-aerial exposure as bounding events 102 

for cycles.  103 

Deriving information on sea-level history from exposure surfaces is, however, difficult because the 104 

nature and degree of development of subaerial exposure surfaces varies greatly (e.g. Davies 1991; 105 

Vanstone 1998; Sattler et al. 2005) and limits the ability to quantify the nature of exposure periods 106 

using sedimentary features (Budd et al. 2002). Goldhammer et al. (1991; 1994) used HFS thickness 107 

trends to define a sedimentary hierarchy, providing a clear example of what a hierarchy is 108 

interpreted to constitute. Based on observations of variations in cycle thickness throughout a 109 

sequence, a hierarchy was interpreted from the relative position of thicker and thinner “fifth-order” 110 

high-frequency sequences within a “lower-order” sequence (Goldhammer et al. 1991). Fifth-order 111 

cycles were interpreted, measured and were found to thin upwards within a succession. When a 112 

fifth-order cycle that was thicker than the underlying cycle was observed, it was considered to be 113 

the end of that particular sequence and the start of a new lower-frequency sequence (“fourth-114 

order”). From this kind of analysis, “bundles” of cycles in the form of HFS are said to occur within 115 

each lower-frequency sequence, with a bundling ratio defined based on how many HFSs occur 116 

within the LFS. This ‘cycle-bundling’ concept is now commonly advocated by workers as evidence 117 

for the operation of Milankovitch-forced glacio-eustasy. In the case of the Paradox Basin strata, 118 

cycle-bundling is manifest at a maximum ratio of 9:1 (with a minimum of 3:1), contrasting with the 119 



usual 5:1 ratio quoted for many successions (e.g. Goldhammer et al. 1987). A shortfall in the 120 

number of high-frequency sequences per sequence is usually accounted for by citing “missed beats” 121 

as a cause (sensu Goldhammer et al. 1994; p262), although it is notable that authors rarely explain 122 

how more beats than the usual 5:1 (e.g. the 9:1 described above) are accounted for  via this method.  123 

Further examples of more rigorous definitions of hierarchies come from studies critical of 124 

interpretations of order in carbonate successions (Drummond and Wilkinson 1993a; 1993b; 125 

Wilkinson et al. 1997). Drummond and Wilkinson (1993b; p688) state that “…many cyclic 126 

sequences exhibit a distinct stacking hierarchy wherein a pattern of thickness is repeated 127 

throughout an individual sequence”. Drummond and Wilkinson (1993a; p369) expand upon this: 128 

“Explicit in this argument is that each meter-scale cycle represents a single excursion of sea-level 129 

and that repeated patterns in cycle thickness faithfully represent the constructive interference of 130 

forcing functions of different frequency”.  These statements further reiterate the concept that 131 

thickness of cycles bears direct relation to the order of forcing, and that trends in thickness are 132 

related to interference of multiple orders of forcing. 133 

An objective definition of a sedimentary hierarchy 134 

These common themes in previous descriptions of sedimentary hierarchies can be used to 135 

formulate a more rigorous definition. Since cycle development can be complex (Burgess 2006) and 136 

lithofacies are not uniquely diagnostic over shallow-water depth ranges (Rankey 2004), any 137 

cyclicity and hierarchies defined using facies transitions must include significant uncertainty. In 138 

this study we therefore focus on hierarchies defined in terms of thickness. Hierarchies described in 139 

other studies tend to include the following: 140 

(a) The assumption that an ordered forcing‐mechanism causes an ordered pattern to be 141 

recorded in sedimentary strata by influencing accommodation; 142 

(b) The observation that two or more smaller HFSs “stack” or bundle into a larger LFS; 143 

(c) That ostensibly ordered variations in thickness are used to define the larger-scale LFS; 144 

(d) That a new LFS begins when the thickness of a given HFS exceeds that of the underlying 145 

HFS. 146 

The concept of a sedimentary hierarchy in ice-house platform carbonates as proposed by earlier 147 

workers can be formalized as the following definition:  148 

“a sedimentary hierarchy consists of two or more high-frequency sequences, each bounded 149 

by unambiguous evidence of sub-aerial exposure, in which there exists a repeated trend of 150 



decreasing high-frequency sequence thickness such that within a single low-frequency 151 

sequence each high-frequency sequence is thinner than the previous sequence .” 152 

In this definition subaerial exposure surfaces define the thickness of an individual HFS. Stacking of 153 

these HFSs and trends of decreasing vertical thickness define any sedimentary hierarchy present.  154 

In ice-house environments sub-aerial unconformities generally provide unambiguous evidence of a 155 

sea-level fall and can therefore be reasonably used as boundaries to HFSs. Greenhouse 156 

environments may also display evidence for sub-aerial exposure (e.g. Bover-Arnal et al. 2013, 157 

Cariou et al. 2013) although well-developed surfaces may be lacking (Haas, 2004), and so the 158 

selection of appropriate bounding surfaces is more difficult. For greenhouse carbonate successions, 159 

bounding surfaces could be reasonably placed at facies transitions that show an unequivocal fall of 160 

relative sea-level. An example of such a transition may be from inter-tidal to sub-tidal strata 161 

(Wright 1996). However, similar transitions can also occur due to autocyclic processes (Burgess 162 

2001) and from tectonic-forcing overriding any eustatic controls (Bosence et al. 2009). A good 163 

understanding of three-dimensional stratal geometries and careful consideration of allo versus 164 

autocyclic processes (Burgess 2006) is therefore needed to define HFS boundaries in greenhouse 165 

strata. To avoid these issues, this study focuses on the definition of a HFS as it applies to ice-house 166 

cycles; i.e. bound by sub-aerial exposure surfaces.  167 

Careful application of the above definition of hierarchy should decrease uncertainty in description 168 

and increase reproducibility from outcrop description. Further to this, numerical modelling can be 169 

used to give some indication as to the likelihood of creating hierarchical strata, as defined, under 170 

varying conditions arising from the combined interactions of eustatic controls of varying 171 

periodicity and amplitude. Absolute and even most relative age-dating of ancient successions is not 172 

able to differentiate individual HFSs at the scale of the interpreted cyclicity (<20-100ka), nor is it 173 

able to detect significant changes in sedimentation rate that may distort any original signal.  174 

Forward modeling therefore represents a method to determine how an ordered forcing mechanism 175 

is recorded as strata and allows us to examine the accuracy of the recording mechanism (Figure 2).  176 

Model formulation 177 

The model presented here is a one-dimensional numerical process-response stratigraphic forward 178 

model of carbonate accumulation (Pollitt 2008; Burgess and Pollitt, 2012). The model records 179 

accumulation on a simulated carbonate platform at a single point in space. Dominant processes 180 



affecting icehouse accommodation creation are glacio-eustatic sea-level change and subsidence 181 

(Burgess 2001; Barnett et al. 2002) which operate as independent variables. One-dimensional 182 

modelling lends itself well to the evaluation of stacking-patterns in platform top carbonates 183 

because aggradational stratal geometries are common in isolated platform interiors during ice-184 

house periods (e.g. Goldhammer et al. 1994, Della Porta et al. 2002) and it is often assumed that 185 

high-frequency high-amplitude eustasy is a dominant control on stacking. Previous studies 186 

incorporating one-dimensional modelling of carbonate cyclicity have also attempted to address the 187 

conditions which would lead to Milankovitch-type 5:1 bundling of cycles (e.g. Walkden and 188 

Walkden, 1990).  The benefit of using a simple one-dimensional model is that many thousands of 189 

long-duration simulations can be run allowing criteria such as thickness to be systematically 190 

evaluated against controlling parameters like eustatic period and amplitude, and production and 191 

subsidence rates.  192 

Proponents of Milankovitch forcing of cyclic sequences have based their arguments primarily on 193 

the assumption that the periodicity of individual cycles (as calculated from numbers of cycles and 194 

sequence duration) commonly falls within the same range as that of Milankovitch-band parameters 195 

(20-400ka; Vail et al., 1977, Berger 1978). Intermediate-frequency oscillations, with periodicity of 196 

100ka to 400ka, are commonly interpreted to oscillate with amplitude of 45-75m (Crowley and 197 

Baum 1991) although amplitudes of up to 95m have also been suggested (Heckel 1986, Read et al. 198 

1986, Wright and Vanstone 2001). High-frequency oscillations are typically envisaged to have 199 

amplitudes up to 35m, with a periodicity of ~20ka to 40ka (e.g. Read et al. 1986, Paterson et al. 200 

2006). 201 

Allocyclic eustatic fluctuations forced by glacial build-up and melting are modelled using an 202 

asymmetrically-modified sinusoid, according to the function 203 
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where   is the relative proportion of the period represented by the positive gradient limb, and β is 205 

the relative proportion of the period represented by the negative gradient limb. Outside this range 206 

f(x) is defined to be periodic with period α + β. Since this function is odd (i.e. f(-x)= f(+x)) its 207 

Fourier series consists of sines, therefore 208 
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Carbonate accumulation 212 

Carbonate accumulation is calculated iteratively according to operation of several simple processes 213 

summarised as  214 

 215 

where t is time, z is platform surface elevation, and c, e, o, a and d are rates of carbonate 216 

accumulation, euphotic production, oligophotic production, aphotic production and surface 217 

lowering respectively. All rates are expressed in metres per million-years. Carbonate producers 218 

within the model are categorised as euphotic, oligophotic and aphotic (after Pomar 2001; Figure 3). 219 

Utilising multiple curves for carbonate production provides a way to define discrete lithofacies as 220 

simulation outputs, however this was not included in this study due to the aforementioned 221 

evidence against simple facies-depth relationships.  222 

Euphotic biota are autotrophic and autoheterotrophic organisms requiring well-lit water and thus 223 

inhabiting shallow depths in the euphotic zone, which extends typically to 20-30m (Milliman 1974, 224 

Hallock and Schlager 1986). Estimates of euphotic zone sedimentation rates vary widely (e.g. 225 

Demicco and Hardie 2002; Strasser and Samankassou 2003) although they are well documented in 226 

modern environments for framework building organisms (e.g. Bosscher and Schlager 1993). The 227 

rates used in the model take into account the usually limited geographic extent of framework-228 

building organisms in inner-platforms (cf. Smith and Kinsey 1976). The euphotic production 229 

component of the model is based on the work of Bosscher and Schlager (1993) and is applied in the 230 

model as 231 

𝑒(𝑡) =  𝑒(𝑚) × tanh[𝑘 × exp(𝑑 × 𝑤(𝑡))] 
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where w is water depth, t is the current timestep, e is carbonate accumulation, d is a decay constant 232 

and k is a rate constant.  233 

Oligophotic organisms (autotrophic and autoheterotrophic) inhabit the oligophotic zone, 234 

characterised by lower light levels and sometimes lower temperature (Milliman 1974; Pomar 235 

2001). Rates of production for deeper-water oligophotic carbonate factories are uncertain, but 236 

estimates suggest between 30-60% of euphotic factory rates (Pomar 2001; Schlager 2003). The 237 

oligophotic production component is represented by  238 

𝑜(𝑡) =  𝑜(𝑚) × 𝑤(𝑡) < o(𝑎)

 
⇒ tanh{𝑜(𝑘) × exp[𝑜(𝑑) × (𝑜(𝑎) − 𝑤(𝑡))]}  tanh{𝑜(𝑎) × exp[𝑜(𝑑) × (𝑤(𝑡) − 𝑜(𝑎))]} 

where w is water depth, t is the current timestep, o is carbonate accumulation, a is a turn-around 239 

depth constant, d is a decay constant and k is a rate constant. 240 

Production rates for aphotic sedimentation (from heterotrophic organisms) at shallow water 241 

depths are poorly constrained and are often categorised along with euphotic sedimentation rates 242 

(Pomar 2001). Aphotic sedimentation into deeper water is more constrained, with evidence from 243 

Pleistocene and Holocene data suggesting pelagic sedimentation to occur at a rate of 52-66m Ma-1 244 

(Vollbrecht and Kudrass 1990). Aphotic production is modelled using the function 245 

𝑎(𝑡) =  𝑎(𝑚) × 𝑤(𝑡) < 𝑎(𝑤)  
 

⇒ 𝑤(𝑡) × 𝑎(𝑤)  𝑤(𝑡) < 𝑎(𝑝)
 

⇒ 1 − [
(𝑎(𝑤) − 𝑤(𝑥))

(𝑎(𝑤) − 𝑎(𝑝))
] × 𝑎(𝑟) 𝑎(𝑟) 

where w is water depth, t is the current timestep, a is carbonate accumulation, p is a turn-around 246 

depth constant, r is a rate constant. 247 

Model parameters and model runs 248 

Each individual simulation in this study has a runtime of 3Ma. This was selected as an appropriately 249 

long duration to allow a significant number of LFSs to be generated. It also allows the simulated 250 

carbonate platform to come to a state of equilibrium relative to longer-term sea-level behaviour. A 251 

state of equilibrium in this model either means the platform always aggrades at or near sea-level or 252 

the platform drowns.  Since the longest period of forcing simulated was 112ka, 3Ma allows for 26 253 

such oscillations and therefore enough time to reach either state and determine if hierarchical 254 

strata form. Periodicities of oscillation were fixed at 23ka for high-frequency, 112ka for 255 

intermediate-frequency and 1Ma for low-frequency (Berger, 1978). Asymmetric sea-level 256 



oscillations are assumed to represent the faster melting of continental ice-sheets than their 257 

accumulation and typify ice-house sea-level behavior (de Boer and Smith 1994).  High and 258 

intermediate-frequency oscillations were therefore modelled with 95% asymmetry while low-259 

frequency oscillations were modelled as symmetrical (refer to Goldhammer 1991 for discussion of 260 

asymmetry in modelling sea-level behaviour). Although most of the other parameters and variables 261 

within the model are appropriate for both ice-house and greenhouse regimes, both the asymmetry 262 

and amplitude of the eustatic components are focused on characterizing the most likely sea-level 263 

behavior in ice-house periods. 264 

Sensitivities to the iterative value (time-step) were evaluated by running a single simulation many 265 

times with different time-steps until a measured criterion became stable (i.e. did not vary between 266 

simulations). Through this sensitivity analysis a time-step of 0.000025Ma (25a) was selected. This 267 

time-step was chosen as it is at the upper limit of numerical stability (Figure 4). 268 

Parameters varied in the simulations are given in Table 1. The range of sea-level amplitudes was 269 

chosen in order to bracket the range of oscillation amplitudes documented in published literature 270 

(e.g. Heckel 1986; Crowley and Baum 1991; Wright and Vanstone 2001). Subsidence was modelled 271 

at a constant rate, varied within a range considered to represent a reasonable spectrum of likely 272 

scenarios. A minimum rate of 10m Ma-1 was modelled in order to represent intra-cratonic basins 273 

while a maximum rate of 900m Ma-1 was considered to represent a rapidly subsiding basin on an 274 

active plate margin. 275 

The simulations presented in this study did not include any sub-aerial denudation during exposure 276 

since rates of carbonate dissolution from ancient platforms are poorly constrained. Although some 277 

empirical estimates of carbonate dissolution are available (e.g. Plan, 2005) the high degree of 278 

uncertainty surrounding these values as applied to ancient platform interior sediments introduces 279 

significant complexity into evaluating the response of stratigraphy to external forcing. Additionally, 280 

including erosion makes comparison with previous studies that did not invoke erosion (e.g. 281 

Goldhammer et al. 1994) more troublesome. Future work will be needed to quantify the effect of 282 

sub-aerial denudation on the likelihood of generating a sedimentary hierarchy. 283 

In each simulation a parameter is modified within the range according to a predefined stepping 284 

value, thus each simulation represents the unique combination of the five variables. 110,000 285 

simulations were run, spanning the complete range of all five variables.  286 

Model Output 287 



Although the model outputs simulated thickness and chronostratigraphic sections (Figure 2) that 288 

are visually similar to outcrop measured sections a more quantitative measure of hierarchy is 289 

required to objectively compare both simulated and outcrop examples. This measure is used to 290 

provide a single value per simulation that could be evaluated statistically across several thousand 291 

model runs. 292 

This metric is presented here as a ratio which represents the number of HFSs per LFS and is 293 

referred to as the “h-value”. The calculation of h is made with complete information in both a time 294 

and thickness-domain since within the model all parameters and responses are known. The h-value 295 

can be expressed as 1/n, where n is the number of HFSs (Figure 5). This provides a convenient way 296 

of comparing the degree of hierarchy development from multiple simulations. In a strongly non-297 

hierarchical system, for instance, there may only be one HFS per LFS, which would result in a ratio 298 

of 1:1 (or h=1). Over the course of a 3Ma simulation there will be occasions when more than one 299 

HFS occurs per LFS, and so the average ratio for the entire simulation would be h<1. If conditions 300 

consistently allowed two HFSs per LFS, the ratio would be h=0.5, and if there were three then 301 

h=0.33. By this measurement and the definition of hierarchy employed here, a sedimentary section, 302 

simulated or otherwise, can be considered to display weak evidence of a sedimentary hierarchy if 303 

there are on average >=2 HFSs per LFS (h<0.5), and strong evidence of a sedimentary hierarchy if 304 

there are on average >=3HFSs per LFS (h<0.33). 305 

Results 306 

Figure 6 shows the results of four simulations where the amplitude of the high-frequency eustatic 307 

component has been varied to result in h-values reflecting a range of hierarchical and non-308 

hierarchical outcomes. All parameters except high-frequency amplitude were constant in these 309 

simulations, including intermediate-frequency amplitude which was fixed at 40m. As high-310 

frequency amplitude increases, more oscillations of sea-level are recorded as discrete units of 311 

sedimentation separated by sub-aerial exposure surfaces (i.e. a HFS). This is a direct consequence 312 

of amplitude, since higher amplitude oscillations have a greater likelihood of exposing the platform. 313 

Figure 7 displays the corresponding stratigraphic diagrams to the chronostratigraphic results 314 

shown in Figure 6. All simulations produce stratigraphic sections that resemble metre-scale ice-315 

house HFSs described from outcrop. Variation in the amplitude of high-frequency oscillation results 316 

in markedly different cycle thicknesses although all simulations generate a similar total sediment 317 



thickness (204-219m). Non-hierarchical sections (h>0.5) have cycle thicknesses that are roughly 318 

similar to those described from outcrops of ice-house platform carbonates (10-15m). Weakly to 319 

strongly hierarchical sections (h<0.5) display thinner cycles the higher the h-value.  The most 320 

hierarchical section has an average cycle thickness of 6.06m. This is thinner than usually described 321 

from ice-house successions and is a consequence of having rapid glacio-eustatic oscillations; many 322 

oscillations are recorded as discrete periods of sedimentation, but since the oscillations are of 323 

short-duration the resulting cycles are thin. 324 

The likelihood of generating a sedimentary hierarchy for 110,000 parameter combinations across 325 

the investigated range is shown in Figure 8. These results are displayed in the chronostratigraphic 326 

time-domain and show that only 9% of possible parameter values lead to strata displaying at least 327 

weak evidence of a sedimentary hierarchy (i.e. having on average two HFSs per LFS or h<0.5). 328 

Furthermore, only 4% of simulations display strong evidence of a sedimentary hierarchy (having 329 

on average three HFSs per LFS or h<0.33). 330 

The cumulative probability distribution for these results shows that the majority of simulations 331 

(78%) have h>0.75 meaning that these simulations average between 1 and 2 HFSs per LFS (Figure 332 

8). These 78% of models run do not exhibit consistent trends of vertically decreasing thickness 333 

within a LFS and so do not generate hierarchical strata. This suggests that hierarchies are created 334 

only under a specific and limited set of allocyclic forcing conditions. 335 

The cumulative probability distribution for the same set of simulations but for a thickness-domain 336 

hierarchy shows that based on analysis of thickness alone (Figure 9), without additional 337 

information about, for example, duration of deposition, only 15% of simulations exhibit weak 338 

evidence of a sedimentary hierarchy. Furthermore less than 1% of simulations display strong 339 

evidence of a sedimentary hierarchy. In contrast to results measured in the chronostratigraphic 340 

time-domain, where a majority of simulations showed strong evidence against a sedimentary 341 

hierarchy (h>0.75), thickness-domain results show relatively few simulations with either very 342 

strong evidence for or against a hierarchy. Fewer than 1% display strong evidence for a hierarchy 343 

(h<0.33) and only 6% display strong evidence against a hierarchy (h>0.75). The majority of 344 

simulations therefore have between 1.5 and 2 HFSs per LFS demonstrating that when measured in 345 

the thickness-domain alone, most modelled strata display evidence against a sedimentary 346 

hierarchy. 347 



Using the parameter-space distribution of time-domain hierarchical and non-hierarchical 348 

simulations we can investigate further why evidence for a thickness hierarchy is weaker than 349 

combined time-thickness evidence (Figure 10). Under relatively simple conditions with only two 350 

eustatic variables there is a clear relationship between amplitude of low-frequency oscillation 351 

relative to that of intermediate-frequency oscillation and the ability to generate a hierarchy. It is 352 

only when the amplitude of high-frequency oscillation exceeds ~70% of the intermediate-353 

frequency amplitude that hierarchies are consistently generated throughout a simulated section 354 

(i.e. returning an average of h<0.5). This relationship between relative amplitudes of oscillation also 355 

provides an insight into why simulations with the most extreme h-values occur. The least 356 

hierarchical strata occur when intermediate-frequency amplitude is greatest, while the most 357 

strongly hierarchical strata form when high-frequency amplitude is largest and so end-member h-358 

values are limited to extremes of oscillation amplitude.  359 

The distribution of h-values for this group of simulations is without discrete steps or tipping points 360 

(Figure 11). As the relative amplitude of high- to intermediate-frequency oscillations increases, the 361 

mean h-value of the simulated strata also increases. For the range of parameter values tested here, 362 

a hierarchy is increasingly likely with increasing higher-frequency eustatic oscillation relative to 363 

the amplitude of the lower frequency oscillation. Given these results, if the amplitude of high-364 

frequency eustatic oscillations is known for given strata (in the Pleistocene for instance), it may be 365 

possible to estimate the h-value range and likely intermediate-frequency amplitude.  366 

Examination of a single hierarchical and a single non-hierarchical example from this parameter-367 

space distribution provides insight into why this relationship exists (Figure 12). In the non-368 

hierarchical case fourteen HFSs are generated. Nine HFSs are clearly forced by the intermediate-369 

frequency sea-level oscillation and five HFSs are forced by a high-frequency oscillation of sea-level 370 

during the falling-stage of an intermediate-order oscillation. The small amplitude high-frequency 371 

oscillation (20m) during the relatively large amplitude intermediate-frequency oscillation (90m) 372 

provides only a short interval during the falling-stage of the intermediate-frequency oscillation 373 

when a HFS can be generated. In contrast, in the hierarchical example during the same period, 33 374 

HFSs are created because the high-frequency higher-amplitude oscillations have a much greater 375 

impact on the geometry of the relative sea-level curve. Instead of only triggering deposition during 376 

the falling stage of an intermediate-frequency oscillation, higher amplitude high-frequency 377 

oscillations are sufficient to regularly trigger and then truncate sedimentation regardless of the 378 



position on the intermediate-frequency curve. This creates hierarchical strata with many HFSs per 379 

LFS. 380 

Stratigraphic completeness in these two simple examples is surprisingly similar given the variation 381 

in regularity of exposure events (Figure 12). In both cases, mean stratigraphic completeness is 382 

calculated by determining the percentage of time during each HFS where sedimentation occurs. The 383 

mean value represents the average for all HFSs over the entire simulation. These results do not 384 

suggest that hierarchical strata will tend to be more incomplete than non-hierarchical strata. In this 385 

example, the non-hierarchical example has average stratigraphic completeness of 49%, while the 386 

hierarchical example is 47% complete. In both of these cases the minimum and maximum values for 387 

stratigraphic completeness are similar, suggesting that in each simulation there are end-members 388 

of similarly long and short periods of sedimentation.  Although short duration sub-aerial exposure 389 

occurs more regularly in the hierarchical simulation, the non-hierarchical simulation has long 390 

periods of less frequent exposure at intermediate-frequency lowstands of sea-level. The net result 391 

is similar overall periods of non-deposition. 392 

Although the relationship between hierarchy and stratigraphic completeness is straightforward 393 

under these simple forcing conditions, as the complexity of multiple nested eustatic curves is 394 

introduced the incidence of hierarchical strata decreases. This is demonstrated in Figure 13 with 395 

the addition of a third forcing component; a eustatic curve with a 1Ma symmetric oscillation of 396 

varying amplitude. Generally, as the amplitude of this eustatic component increases, fewer cases of 397 

hierarchical strata occur. More rapid accommodation change results in a greater likelihood of 398 

drowning during the transgressive stage. 399 

Burgess and Pollitt (2012) used the same forward model to study controls on lithofacies thickness 400 

distributions. They showed that increasing the complexity of the forcing eustatic curve with 401 

additional frequencies of oscillation created exponential thickness distributions of the kind 402 

observed in outcrop. Simpler curves created non-exponential thickness distributions. Exponential 403 

thickness distributions are significant because statistical theory suggests that they arise from 404 

random processes. Burgess and Pollitt (2012) showed that they can also arise from complex forcing 405 

functions in a deterministic model when rapid changes in water depth generate strata with many 406 

thin lithofacies units and few thick lithofacies units. Aside from raising interesting issues about the 407 

nature of randomness versus complexity, this result is significant here because more complex 408 

forcing also tends to decrease the likelihood of hierarchical strata. These results suggest that 409 



hierarchical strata represent the effects of simple external forcing and not complex interactions of 410 

multiple forcing components, as previous workers have suggested (e.g. Paterson et al. 2006). 411 

Only 9% of the 10,000 simulations shown in Figure 13 show at least weak evidence for a time-412 

domain hierarchy and these are restricted to a relatively small region of parameter-space. This 413 

small region represents a ‘Goldilocks’ zone of suitable parameters for time-domain hierarchy 414 

development. In the case of the model runs represented by Figure 13 this zone represents the 415 

following conditions: 416 

1. Subsidence rate is sufficient for development of stacked cycles rather than a continuously 417 

exposed platform (>=100m Ma-1). 418 

2. Subsidence rate is not so high that accommodation significantly outpaces sediment supply 419 

and drowns the carbonate factory (<500m Ma-1). 420 

3. The low-frequency forcing component is of low amplitude (<120m). Higher amplitudes 421 

increase the likelihood of drowning and decrease the potential for generation of 422 

hierarchical strata. 423 

4. The high-frequency forcing component is of sufficient amplitude to regularly cause HFS 424 

development (>70% that of intermediate-frequency amplitude). 425 

These criteria are true for this particular rate of maximum carbonate productivity (2000m Ma-1). 426 

Different productivity rates would change the zone of preferential hierarchy development. These 427 

results support the view that hierarchical strata require quite specific conditions to develop and so 428 

are likely to be relatively rare. 429 

The results depicted in Figure 13 demonstrate the range of modelled parameter values in which 430 

hierarchies defined in the chronostratigraphic domain can occur. Figure 14 shows thickness-431 

domain (stratigraphic) results from the same set of simulations with h-value calculated from 432 

thickness information alone. Stratigraphic hierarchies observed in model results may be used to 433 

infer how likely it is that a hierarchy can be reasonably interpreted from outcrop. In these cases, the 434 

h-value represents the degree of hierarchy development indicated by stacking of HFS thickness, 435 

where a new LFS is started if a given HFS is thicker than the last. Figure 14 shows that using a 436 

thickness-only definition there is a broader parameter-space range in which hierarchical sections 437 

may be identified. However, fewer model runs can be categorized as strongly hierarchical. There is 438 

less of a dependency on low-frequency amplitude, with apparently hierarchical sections occurring 439 

at large low-frequency amplitudes. Similarly, high h-values are recorded at low subsidence rates, 440 



although drowning of the platform still terminates hierarchy development above rates of 400 m Ma-441 

1.  442 

These two different methods of defining hierarchies give different results because many examples 443 

of hierarchies defined using thickness information do not constitute hierarchies when considered 444 

using full chronostratigraphic information (e.g. Figure 2). Indications of hierarchy from thickness 445 

data alone are often inaccurate. This effect is particularly acute if high-frequency oscillations are of 446 

large amplitude. In these cases high-frequency oscillations regularly force HFS deposition on the 447 

transgressive part of the intermediate-frequency curve. Although of short-duration, these HFSs are 448 

often thicker than the underlying HFS and would be identified, using thickness information alone, 449 

as a new LFS.  An example of this behavior is shown in Figure 2. When analysed using thickness 450 

information alone, these strata appear hierarchical when in a true sense they are not. A significant 451 

number of the hierarchical sections shown in Figure 14 can be considered false-positives. In these 452 

situations the hierarchy present in the stacking patterns of HFS thickness is not truly representative 453 

of the forcing mechanism since the LFSs in these sections will be composed of HFSs forced by 454 

different oscillations of sea-level (as is the case in Figure 2). In effect, HFSs are bundled incorrectly 455 

and the stratigraphic record – in the process of converting a time-domain sedimentation rate to the 456 

thickness-domain – is an imperfect record.  This result suggests that determining which sections 457 

truly display stacking representative of the forcing mechanism is not possible using thickness 458 

information alone. Comparison between the number of strongly-hierarchical simulations in the 459 

time-domain versus the much greater number of weakly-hierarchical simulations in the thickness-460 

domain suggests that the wide distribution of hierarchical sections indicated by the thickness-only 461 

analysis is not an accurate representation of the forcing mechanism and over-estimates the number 462 

of hierarchical simulations. 463 

Comparison to outcrops 464 

Results from the model runs discussed above suggest that truly hierarchical strata are relatively 465 

rare and restricted to a small area of the modelled parameter-space. However, hierarchies defined 466 

based on thickness data have been defined many times, both explicitly and implicitly, in the 467 

interpretation of carbonate outcrops. Lehrmann and Goldhammer (1999) contained interpretations 468 

of data from 93 outcrops, five of which contained explicit interpretations of sedimentary 469 

hierarchies composed of stacked “4th-order parasequences” (LFSs) and “5th-order parasequences” 470 

(HFSs) and based on thickness trends. For instance, the Hermosa Group logged by Goldhammer et 471 



al. (1994) is defined as “composite stratigraphic cyclicity, in which small depositional cycles build 472 

into larger sequences according to vertical stacking patterns” (Goldhammer et al. 1994; p267) and 473 

is clearly defined by diagrams in that study. Two of these five outcrops, the Pennsylvanian Hermosa 474 

Group and Gobbler Formation in the south-western USA were also logged independently by Pollitt 475 

(2008; Figure 15). Figure 16 shows the hierarchy h-value as per the original workers’ 476 

interpretation of HFSs and LFSs as well as the h-value using the HFS definition made in this study.  477 

h-values resulting from the original worker’s interpretation of HFSs and LFSs range from 0.08 to 478 

0.30. This is aligned with the interpretation that these sections are hierarchical (e.g. Goldhammer et 479 

al. 1994). However using the hierarchy definition made in this study (i.e. consistently starting a new 480 

LFS when a given HFS is thicker than the last) results in higher h-values ranging from 0.57 to 0.75, 481 

suggesting that in fact the strata are not hierarchical in any meaningful sense. In these cases a 482 

rigorous application of stacking according to vertical thickness does not result in a hierarchy, but 483 

instead results in approximately 1.6 HFSs per LFS which is not representative of Milankovitch 484 

bundling ratios. Similarly, the Holder and Gobbler Formations, described as cyclic by previous 485 

workers (Wilson 1972; Algeo et al. 1991), respectively have h-values of 0.65 and 0.76 which 486 

equates to an average of 1.5 and 1.3 HFSs per LFS.  487 

The fact that all seven cases shown in Figure 16 were interpreted as hierarchical based on thickness 488 

and stacking patterns but this was not reproduced with a more rigorous definition suggests that 489 

workers have an inherent bias towards inferring patterns of order in sedimentary sections.  490 

Analysis of the remaining 88 sections in the data published by Lehrmann and Goldhammer (1999) 491 

suggests that h-values are relatively consistent and usually within the range h=0.6-0.7 (Figure 17). 492 

This is surprising given that the data comes from a wide variety of depositional settings and ages 493 

from the Paleozoic to Cenozoic. The outlying datapoints (Figure 17) are likely to be a result of 494 

undersampling in terms of number of HFSs. Sequences with less than 20 HFSs show greater scatter 495 

than those with n>20 (Figure 18). This data suggests that in the majority of these measured 496 

sections, when a rigorous definition of a sedimentary hierarchy is applied, the number of HFSs per 497 

LFS is between 1.5 and 2. This is not suggestive of any type of bundling according to climatic 498 

forcing, and suggests that consistent vertical trends in HFS thickness are not present in any of the 499 

studied outcrops. Analysis of the number of “runs” of decreasing or increasing lithofacies unit 500 

thickness in the Lehrmann and Goldhammer (1999) dataset shows that there are typically 501 

approximately two lithofacies units in a given run (Figure 19). This data suggests that long term 502 

consistent trends in lithofacies unit thickness are rare and most are indistinguishable from random, 503 



a finding which supports that of earlier workers (Wilkinson et al. 1996). It also suggests the 504 

possibly of bias inherent to stratigraphic interpretation, where workers tend to ‘even out’ thickness 505 

of lithofacies units and avoid extremes in thickness (Burgess 2008); where thin units are rarely 506 

interpreted and are commonly lumped as interbeds and thick units are broken into smaller units 507 

using a variety of criteria such as sorting or grainsize. 508 

Discussion 509 

“All models are wrong, but some are useful” (Box 1987) is an important statement to consider when 510 

interpreting the results from any type of forward model. The one-dimensional forward modelling in 511 

this study, while certainly simplistic and “wrong” in many respects, is useful in the sense that it 512 

forces us to objectify and quantify our concept and definition of sedimentary hierarchies in 513 

carbonate successions. Key assumptions in the model have a strong bearing on its output. In the 514 

case of generating a sedimentary hierarchy, key assumptions are the parameters relating to the 515 

ordered forcing of sea-level behavior and the definition of a sedimentary hierarchy.  516 

Clearly the results presented here are very dependent on the definition of hierarchy. Different 517 

results would be obtained with a different definition. Other definitions of a hierarchy are certainly 518 

possible and have been employed elsewhere. For instance, a hierarchy could be defined in terms of 519 

facies partitioning whereby proportions of facies are altered relative to depositional position within 520 

a systems tract. This may be particularly important in greenhouse environments and to evaluate 521 

hierarchies in greenhouse strata it is likely that further model runs are required with greenhouse-522 

specific parameters (e.g. low-amplitude oscillations, autocyclic component). A comparison of the 523 

occurrence of hierarchies by different definitions in a controlled model environment could be 524 

important future work.  525 

With these limitations in mind, these results from numerical modelling suggest that forcing by 526 

ordered cyclical sea-level oscillations rarely results in an easily identifiable hierarchy of stacked 527 

cycles, defined either with total chronostratigraphic information (9% of cases) or with just 528 

thickness data (15% of cases). The fact that only 9% of sections result in a hierarchical 529 

chronostratigraphic section is particularly illuminating, since it suggests that vertically decreasing 530 

trends in thickness are not an appropriate way to identify ordered patterns in sea-level behavior. 531 

Were this not true, then clearer trends in duration of HFS deposition would result from the trends 532 

in accommodation caused by oscillation of sea-level (as depicted conceptually in Figure 1).  533 



One key difference between the conceptual depiction in Figure 1 and the model simulations 534 

conducted in this study is the periodicity of orbital oscillation. In the conceptual example, and in 535 

many other numerical studies of nested cyclicity (e.g. Goldhammer 1994) the period of the high-536 

frequency oscillation is evenly divisible from the intermediate-frequency, such that five high-537 

frequency cycles fit exactly within one intermediate-frequency oscillation. High-frequency cycles 538 

therefore occur in the exact same position relative to the intermediate-frequency oscillation on a 539 

consistent basis. There is no reason to expect Milankovitch parameters to be evenly divisible in this 540 

way. Behavior of individual Milankovitch-scale orbital variations is known to vary through time 541 

quasi-chaotically, suggesting that such a state is unlikely to occur and be maintained over a 542 

significant period (Laskar et al. 2011). Given this, it seems more reasonable in this simple model to 543 

simulate sedimentation with periodicities that vary relative to one another through time, meaning 544 

that high-frequency oscillations occur in different relative positions to each intermediate-frequency 545 

oscillation (for an example see Figure 6). 546 

The net effect of variation in the relative position of high-frequency oscillations is to change the 547 

duration and thickness of HFSs in each successive intermediate-frequency oscillation. Thus the 548 

hierarchy depicted in Figure 1 cannot occur, and this has a fundamental effect on generation of the 549 

vertical thickness trends used to identify hierarchies. For example, it means that the thickest HFS is 550 

not always at the start of an intermediate-frequency oscillation and the thinnest HFS is not always 551 

at the end. This leads to thickness trends that do not always bear an obvious relationship to the 552 

sequence stratigraphic position and vary significantly from the simple and convenient conceptual 553 

models put forward by earlier workers.  It also means that vertical trends in cycle thickness alone 554 

should not be used to identify hierarchies of stratigraphic cyclicity. Given this, are existing 555 

qualitative models of carbonate sequence stratigraphy useful? Where the nature of bundling of 556 

higher-frequency sequences in lower-frequency sequences changes through time, it is probably not 557 

possible to describe cycle stacking with a single simple conceptual model. Given these important 558 

implications, further research into the ability to generate sedimentary hierarchies under different 559 

combined periodicities of orbital oscillation may increase our understanding of where hierarchies 560 

are likely to occur. 561 

Results presented here demonstrate that even in a simple 1D model, strata may not accurately 562 

represent the signal from external forcing factors. For example, in Figure 2, the LFSs defined in the 563 

thickness domain do not correspond to those defined in the time-domain. In this case, thickness of 564 

successive HFSs, although decreasing vertically, span multiple oscillations of intermediate-565 



frequency eustatic sea-level and so cannot be said to accurately record the forcing mechanism. In 566 

this sense, even a much-simplified representation of the stratigraphic record is demonstrated to be 567 

an imperfect record of hierarchies on the basis of vertical thickness trends. Comparison of model 568 

results to outcrop data supports this conclusion and suggests that even for the best documented 569 

examples of hierarchies in carbonate strata the degree of vertical trends in cycle stacking is likely to 570 

be overstated when a strict definition of a hierarchy is applied. 571 

In these model results, hierarchies occur in only a small region of parameter space. This raises the 572 

question what happens in the remaining >80% of the parameter space where hierarchies do not 573 

occur? Are there other stratal patterns that reflect order arising from allocyclic forcing that have 574 

not yet been described? It is also interesting to consider how introduction of additional complexity 575 

such as sediment erosion, transport and diagenesis in 3D would affect occurrence of hierarchical 576 

strata.  Could some parts of a carbonate platform preserve a stratal hierarchy while others do not?  577 

Further experimental work combined with careful outcrop examination is required to investigate 578 

all of these questions. 579 

Conclusions 580 

1. The numerical forward modeling experiments presented here investigate the response of 581 

depositional systems if they were to behave in the way implied by sequence stratigraphic 582 

(hierarchical) models. This model is internally-consistent and uses plausible parameters.  583 

2. These experiments suggest that in the simplest cases, with two superimposed orders of 584 

allocyclic forcing, the higher-frequency forcing needs to have an amplitude of 70% that of 585 

the lower-frequency oscillation in order to consistently effect cyclicity and generate a 586 

sedimentary hierarchy. Additional frequencies of allocyclic forcing attenuate the eustatic 587 

curve further and decrease the likelihood of any hierarchy being preserved in the 588 

stratigraphic record. 589 

3. Results from a wide range of allocyclic forcing amplitude, subsidence and carbonate 590 

production rates suggest that ordered forcing via cyclical eustatic sea-level change rarely 591 

results in an easily identifiable hierarchy of stacked cycles. Hierarchies defined with full 592 

chronostratigraphic information occur in 9% of model run cases, and in 15% of cases when 593 

defined purely in terms of thickness information. 594 



4. The lack of a significant number of strongly and weakly hierarchical sections suggests 595 

vertical thickness trends in strata are unlikely to be hierarchical, even in situations where 596 

external forcing is present. 597 

5. Hierarchical sections do not intrinsically contain more missing time than non-hierarchical 598 

sections. Hierarchical sections necessarily miss fewer “beats” than non-hierarchical 599 

sections, but simulations from the two groups can show a similar amount of missing time; 600 

non-hierarchical sections can be just as incomplete as hierarchical sections. 601 

6. Strata that appear weakly hierarchical in the thickness-domain are unlikely to be 602 

representative of the true ‘bundling’ of orbital forcing parameters. If frequencies of 603 

oscillation vary through time, relative to one another, the resultant variability in attenuation 604 

of the relative sea-level curve results in significant variation in sediment thickness per 605 

oscillation. This has a tendency to disrupt trends of vertical thickness and leads to false-606 

positive identification of hierarchical sections. This also suggests that vertical thickness 607 

trends are not an appropriate proxy for identify eustatic forcing events in shallow-water 608 

carbonate platforms. 609 

7. Comparison to studied outcrops suggests that hierarchies defined in terms of stratigraphic 610 

thickness are often assumed to be present despite a lack of adequate supporting evidence. 611 

Quantitative analysis of many of these sections suggests that they are not in fact hierarchical 612 

in any meaningful sense. 613 
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Figure Captions 767 

Figure 1: Diagrammatic example of how cyclical variation in accommodation, in this case the combined effects of 768 

two sea-level curves, results in ostensibly cyclical patterns of sedimentation. Modified after Barrell (1917) and 769 

Goldhammer et al. (1994). 770 

Figure 2: (a) Chronostratigraphic and (b) stratigraphic diagrams showing carbonate accumulation. The carbonate 771 

platform starts from 0m elevation and accumulates sediment according to the carbonate accumulation functions 772 

while water depth is greater than lag depth (2m). Submarine hardgrounds are created if water depth is greater 773 

than 0m but less than lag depth. If the carbonate platform is exposed (water depth less than 0) no sedimentation 774 

occurs. Sedimentation is plotted on a secondary axis with a maximum rate of 2000m Ma
-1

. Hardgrounds and sub-775 

aerial exposure surfaces are displayed in the appropriate chronostratigraphic position with an arbitrary y-axis 776 

value. This output from a single model run illustrates that the definition of a hierarchy is domain-dependent and 777 

that the specific characteristics of the hierarchy depend on whether it is measured in time or thickness. Both plots 778 

show the result of a single simulation run over a period of 0.4Ma producing 130m of strata.  779 

(a) the results in time. All model time is accounted for, including time present in the thickness domain as 780 

disconformities, and so a new HFS begins when the underlying HFS ends (i.e. when the platform becomes 781 

exposed). HFSs are stacked into LFSs according to the definition presented in this study. In the time-domain, this 782 

means that a new LFS is started when a given HFS is of shorter duration than the previous HFS.  783 

(b) the results plotted in thickness. HFSs are defined between sub-aerial exposure surfaces. LFSs are defined as 784 

stacked HFSs, beginning when a given HFS is thicker than the underlying HFS. Carbonate production rate is shown 785 

along the x-axis as a proxy for lithofacies typically depicted on stratigraphic columns from output. Large 786 

thicknesses of hardgrounds depict sedimentation occurring slightly below lag depth and outpacing sea-level rise 787 

(thus creating thin beds separated by hardgrounds).  788 

Four LFSs are defined in the time-domain while five LFSs are defined in the thickness-domain. The difference arises 789 

during the fourth HFS which incorporates a long period of exposure and a short period of sedimentation. In the 790 

time-domain this HFS is assigned to the second LFS since it was precipitated by the second intermediate-frequency 791 

rise in sea-level in the simulation. In the thickness-domain, this third HFS is thick enough to start a new LFS, but the 792 

next HFS is also thicker than the underlying HFS, and so forms a LFS comprising a single HFS.  The thickness-domain 793 

therefore gives a false impression of the actual behaviour of sea-level since it suggests five major oscillations of 794 

sea-level, when in fact there were only four.  795 

Figure 3: (a) An example of a depth-dependent carbonate production curve used in the model.  796 



Figure 4: Water depth history from the model depicting a 50ka interval from a single simulation run with a range of 797 

different time steps. The calculated water depths change substantially for time steps greater than 0.00005Ma (50 798 

years) due to approximation (aliasing) error.  A time-step of 0.000025Ma was chosen for the simulations as it is 799 

within the accurate range. 800 

Figure 5: Example output of the model showing how a ratio is recorded to represent the proportion of HFSs per 801 

LFS. 802 

(a) Chronostratigraphic diagram showing carbonate platform growth through time. For a description of the 803 

diagram refer to Figure 2.  804 

(b) Chronostratigraphic diagram showing carbonate production and water-depth relative to a water-depth of 0m. 805 

In this example there are three LFSs, where each successive LFS contains two, four and four HFSs. The ratio is 806 

simply the number of HFSs per LFS (1/x where x=number of HFSs) averaged over the entire simulation. In this case 807 

h=0.33 and would be strong evidence of the existence of a hierarchy (an average of three HFSs per LFS over the 808 

entire simulation). 809 

Figure 6: Chronostratigraphic diagrams of simulations that resulted in a range of h-values. Amplitude of high-810 

frequency eustatic oscillations is the only variable modified between simulations. Intermediate-frequency 811 

amplitude is fixed at 40m, run-time in all cases is 1Ma. As high-frequency oscillation amplitude increases, more 812 

HFSs are recorded and the h-value decreases. Above a high-frequency amplitude of 30m, the simulations could be 813 

said to be strongly hierarchical. Strongly hierarchical simulations do not show a strong correlation with the mean 814 

amount of total simulation time recorded as sedimentation (referred to here as preservation). The simulation with 815 

the most strongly non-hierarchical results preserves the least amount of time as sedimentation. Other simulations 816 

preserve a similar amount of time as sedimentation. 817 

Figure 7: Stratigraphic columns of the same set of simulations shown as chronostratigraphic diagrams in Figure 6. 818 

See text for description and discussion. 819 

Figure 8: Cumulative probability plot showing the results of 110000 model runs to evaluate the likelihood of 820 

generating a hierarchy defined in the time-domain. This plot shows that there is a 9% probability of generating a 821 

mean ratio of h<0.5. h<0.5 is taken here as weak evidence for the existence of a sedimentary hierarchy (an average 822 

of two HFSs per LFS). h<0.33 is taken as strong evidence of a sedimentary hierarchy (an average of three HFSs per 823 

LFS).  824 

Using the h<0.5 criterion it can be said that approximately one in ten simulations (9%) display some evidence for a 825 

hierarchy in the time-domain. Using the h<0.33 criterion it can be said that only approximately one in twenty 826 

simulations (4%) display strong evidence for a hierarchy in the time-domain. 827 



Figure 9: Cumulative probability plot showing the results of 110000 simulations which evaluates the likelihood of 828 

generating a hierarchy in the thickness-domain. This plot shows that there is a 15% probability of generating a 829 

mean ratio of h<0.5. h<0.5 is taken here as weak evidence for the existence of a sedimentary hierarchy (an average 830 

of two HFSs per LFS). h<0.33 is taken as strong evidence of a sedimentary hierarchy (an average of three HFSs per 831 

LFS).  832 

Using the h<0.5 hurdle it can be said that approximately one in seven simulations (15%) display some evidence for 833 

a hierarchy in the thickness-domain. Using the h<0.33 hurdle it can be said that only approximately one in one 834 

hundred simulations (1%) display strong evidence for a hierarchy in the thickness-domain. 835 

Figure 10: Scatter diagram showing the distribution of time-domain hierarchical conditions under a range of sea-836 

level parameters. For this group of 100 simulations oscillation of low-frequency sea-level amplitude was fixed at 837 

0m, subsidence rate was fixed at 200m Ma
-1

 and maximum production rate fixed at 2000m Ma
-1

. Axes represent  838 

varying conditions of intermediate- and high-frequency sea-level amplitude. h-value (degree of hierarchy) is 839 

represented by a gradient colour-scale as depicted. (a) and (b) represent the parameter-space positions of the 840 

simulations depicted in Figure 11, where (a) is an example of a non-hierarchical simulation and (b) is an example of 841 

a hierarchical simulation. (a) and (b) have h-values of 0.84 and 0.43 respectively. 842 

For a given simulation hierarchies are seen to be generated at large amplitudes of high-frequency oscillation 843 

relative to the amplitude of intermediate-frequency oscillation. This trend can generally be said to be linear. It can 844 

be said that for this set of simulations a hierarchy will be generated as long as the amplitude of high-frequency 845 

oscillation is greater than 70% of the amplitude of intermediate-oscillation.  846 

Figure 11: Line diagram showing the distribution of time-domain mean ratio h-values for the simulations depicted 847 

in Figure 9. The probability of generating a sedimentary hierarchy increases with larger high-frequency amplitude. 848 

h-values returned from these simulations have a minimum of 0.2, which corresponds to the maximum possible 849 

number of high-frequency oscillations occurring within an intermediate-frequency oscillation. Consequently a LFS 850 

can contain a maximum of five HFSs.  851 

Figure 12: Chronostratigraphic and stratigraphic diagrams showing (a) an example of a non-hierarchical simulation 852 

and (b) a hierarchical simulation (distinguished with a grey background). The parameter-space location of these 853 

simulations is shown in Figure 9 (a and b). Sedimentation occurs when the relative sea-level curve (RSL) has a 854 

positive elevation relative to the platform surface (represented by a 0-line) and is represented by a horizontal 855 

chronostratigraphic column showing a schematic representation of lithofacies. Per cycle, the amount of time 856 

recorded as deposition, as opposed to non-deposition during emergence, is recorded and presented as a 857 

percentage of the total duration of that cycle. This is averaged over the entire simulation and those values are 858 

presented here. It is notable that both simulations record, on average, a similar proportion of the total simulation 859 



period. This suggests that highly hierarchical sections, even though they have more periods of sub-aerial exposure, 860 

do not record less time. 861 

In the hierarchical example the high-frequency sea-level curve impacts much more upon the overall sea-level curve 862 

and consequently generates several HFSs per intermediate-frequency oscillation. In the non-hierarchical example, 863 

the high-frequency curve impacts less on overall sea-level behaviour due to its smaller amplitude, and therefore 864 

fewer HFSs are generated. This leads to an h-value of 0.43 in the hierarchical case and 0.84 in the non-hierarchical 865 

case. 866 

Figure 13: Parameter-space plot showing the time-domain hierarchy mean ratio recorded by 10000 individual 867 

simulations. Each point represents the mean ratio for a given simulation. These points are arranged into 10x10 868 

rectangles, the axes of which are (x) high-frequency amplitude and (y) intermediate-frequency amplitude. The 869 

squares are arranged into a trellis such that each cell of the trellis has a common low-frequency amplitude and 870 

subsidence rate. Carbonate production rate was not varied in these simulations (2000m Ma
-1

). Platforms which 871 

drowned, and therefore never attained equilibrium relative to sea-level variation, are indicated with a different 872 

symbol. Drowning is defined by a simulation having no production other than aphotic during a single intermediate-873 

frequency oscillation (i.e. water-depth is always greater than 55m). No results are recorded after a platform 874 

becomes drowned. 875 

Generally, it can be said that hierarchical simulations are generated at a range of high- and intermediate-frequency 876 

amplitudes, but only at small low-frequency amplitudes (<100m) and low subsidence rates (<400m Ma
-1

). 877 

Figure 14: Parameter-space plot showing the thickness-domain hierarchy mean ratio recorded by 10000 individual 878 

simulations. Each point represents the mean ratio for a given simulation. These points are arranged into 10x10 879 

rectangles, the axes of which are (x) high-frequency amplitude and (y) intermediate-frequency amplitude. The 880 

squares are arranged into a trellis such that each cell of the trellis has a common low-frequency amplitude and 881 

subsidence rate. Carbonate production rate was not varied in these simulations (2000m Ma
-1

). 882 

Generally, it can be said that hierarchical simulations are generated at a range of high-, intermediate- and low-883 

frequency amplitudes, but only at low subsidence rates (<500m Ma
-1

). 884 

Figure 15: Representative photographs and measured sections from the two outcrop localities documented in 885 

Pollitt (2008). Outcrops are ostensibly cyclic but do not exhibit a sedimentary hierarchy when evaluated 886 

objectively. Position of measured sections on photographs is depicted with black lines. List of abbreviations: SS = 887 

sandstone, GS = grainstone, PS = packstone, WS = wackestone, BS = boundstone, MS = mudstone. 888 

Figure 16: Line diagram showing a comparison between the mean ratio of a series of sedimentary hierarchies 889 

described by various authors and the mean ratio of the same section with the hierarchy evaluated under the strict 890 



definition from this study. Sections indicated by a * are from Pollitt (2008). All data except those indicated by a * is 891 

from Lehrmann and Goldhammer (1999). Of the 93 measured outcrop sections published in Lehrmann and 892 

Goldhammer (1999), only five had an explicitly defined hierarchy (with both 5
th

- and 4
th

-order cycles defined).  893 

Circles indicate the mean and mode h-value using the HFS and LFS definitions of the original workers. Diamonds 894 

indicate the mean and mode ratio resulting from the application of a “strict” definition of a hierarchy presented in 895 

this study (i.e. a new LFS is started when a given HFS is thicker than the last). 896 

Using the author-defined 4
th

-5
th

 order cycles results in a much higher ratio: <0.3, or more than three 5
th

 order 897 

cycles per 4
th

. Using a strict definition of a hierarchy by thickness results in strongly non-hierarchical sections: 898 

average ratio of >0.6, meaning on average, less than two 5
th

 order cycles make up a 4
th

 order cycle. 899 

Figure 17: Scatter diagram  showing the mean h-value and number of HFSs for 88 measured sedimentary sections. 900 

Data is from Lehrmann and Goldhammer (1999). Only three measured sections have a h-value of <0.5 and can 901 

therefore be considered hierarchical. Furthermore, a greater degree of scatter is seen in measured sections with 902 

few HFSs. With more samples (n>~40), h-value is seen to occur in a range between 0.6 and 0.7. Short sedimentary 903 

sections with few interpreted HFSs may therefore give a false impression of a sedimentary hierarchy. 904 

Figure 18: Scatter diagram showing the relationship between the number of HFSs in an outcrop section and the 905 

mean h-value  of that section. Data is from Lehrmann and Goldhammer (1999). The amount of scatter in h-value 906 

decreases as the number of recorded HFSs increases. The amount of scatter associated with fewer HFSs suggests 907 

these sections are under-sampled. This plot suggests that to accurately determine the degree of hierarchy inherent 908 

to a stratigraphic section that section should have >~20 HFSs. 909 

Figure 19: Line chart showing the mean and mode “run” of bed thickness per outcrop from data in Lehrmann and 910 

Goldhammer (1999). For example, a series of thinning upwards beds with the consecutive thickness; 4m, 3m, 2m, 911 

1m, 4m, would constitute a run of four. Error bars represent the standard distribution of the mean number of beds 912 

per HFS for that outcrop. 913 

Table 1: Model parameters used. In each simulation parameters were varied within a range according to a 914 

stepping value. All simulations had a run time of 3Ma. Maximum oligophotic and aphotic production rates were 915 

modelled as a proportion of the maximum euphotic rate (20% and 5% respectively). Lag depth was fixed at 2m. In 916 

order to evaluate the interaction of all possible parameter permutations, 110000 simulations were conducted. 917 
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Figure 8 

Cumulative Probability 

Strong evidence for a hierarchy 

Weak evidence for a hierarchy 

Evidence against a hierarchy 

(on average, less than two HFS per LFS) 

n=110000 

T
im

e
-d

o
m

a
in

 m
e

a
n

 h
-v

a
lu

e
 

Strongly non-
hierarchical 

Strongly 
hierarchical 

h=1 h=0.2 



Figure 9 
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Figure 10 
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Figure 11 
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Figure 12 
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Figure 15 
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Figure 17 
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Figure 18 
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Figure 19 
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Figure 20 

Parameter Step Range Iterations 

High-frequency 

oscillation amplitude 

10 0-100m 10 

Intermediate-

frequency oscillation  

amplitude 

10 0-100m 10 

Low-frequency 

oscillation amplitude 

20 0-200m 10 

Subsidence 100 10-900m 10 

Carbonate 

production 

500 50-5000m Ma-1 11 

Table 1 


