109 research outputs found

    Impact of Climate Change on the Production of Wheat and Rice in India

    Full text link
    India is a world agricultural power, the share of agriculture in GDP is 17.8%, agricultural employment represents 54.87% of total employment and the country is considered the second largest producer wheat and rice. But this advantage is facing several obstacles because India is likely to be severely affected by climate change. India is one of the country's most vulnerable to disasters around the world and many of its 1.2 billion people live in areas vulnerable to hazards such as floods, cyclones and droughts. In this work, we propose a model that highlights the impacts of climate changes (changes in temperatures and precipitations) on the production of wheat and rice. The results confirm the hypothesis according which the impact of climate changes in India are Important

    Using Hydrus 2-D to assess the emitters optimal position for Eggplants under surface and subsurface drip irrigation

    Get PDF
    The main objective of the work is to assess the emitters optimal position for Eggplant crop (Solanum melongena L.) in a sandy loam soil irrigated with surface or subsurface drip irrigation systems, by means of field measurements and simulations carried out with Hydrus-2D model. Initially, the performance of the model is evaluated on the basis of the comparison between simulated soil water contents (SWC) and the corresponding measured in two plots, in which laterals with coextruded emitters are laid on the soil surface (T0) and at 20 cm depth (T20), respectively. In order to choose the best position of the lateral, the results of different simulation runs, carried out by changing the installation depth of the lateral (5 cm, 15 cm and 45 cm) were compared in terms of ratio between actual transpiration and total amount of water provided during the entire growing season (WUE). Experiments were carried out, from April to June 2007, at Institut Sup\ue9rieur Agronomique de Chott M\ue9riem (Sousse, Tunisia). In the two plots, plants were spaced 0.40 m along the row and 1.2 m between the rows. Each plot was irrigated by means of laterals with coextruded emitters spaced 0.40 m and discharging a flow rate equal to 4.0 l h-1 at a nominal pressure of 100 kPa. In each plot, spatial and temporal variability of SWCs were acquired with a Time Domain Reflectometry probe (Trime-FM3), on a total of four 70 cm long access tubes, installed along the direction perpendicular to the plant row, at distances of 0, 20, 40 and 60 cm from the emitter. Irrigation water was supplied, accounting for the rainfall, every 7-10 days at the beginning of the crop cycle (March-April) and approximately once a week during the following stages till the harvesting (May-June), for a total of 15 one-hour watering. To run the model, soil evaporation, Ep, and crop transpiration, Tp were determined according to the modified FAO Penman-Monteith equation and the dual crop coefficient approach, whereas soil hydraulics and rooting system parameters were experimentally determined. Simulated SWCs resulted fairly close to the corresponding measured at different distances from the emitter and therefore the model was able to predict SWCs in the root zone with values of the Root Mean Square Error generally lower than 4%. This result is consequent to the appropriate schematization of the root distribution, as well as of the root water uptake. Simulations also evidenced the contribute of soil evaporation losses when laterals are installed from the soil surface to a 20 cm depth, whereas significant water losses by deep percolation occured at the highest installation depth. The values of WUE associated to the different examined installation depths tend to a very slight increase when the position of the lateral rises from 0 to 15 cm and start to decrease for the higher depths

    Butter oil (ghee) enrichment with aromatic plants: Chemical characterization and effects on fibroblast migration in an in-vitro wound healing model

    Get PDF
    Ghee is a dairy product widely consumed in India, north-Africa, and Middle East countries, having beneficial pharmacological effects. This study aims to characterize the effects of aromatic plants addition (rosemary and clove) on the nutritional, volatile and oxidative profile of cow ghee and to evaluate the effect of flavored ghee on the fibroblasts migration during wound healing in vitro assay. Two flavored ghee products were obtained by adding clove (CG) and rosemary (RG) as aromatic plants through maceration in cattle traditional ghee (BT). It was revealed that enriched ghee samples had significantly lower peroxide values (6.76 and 6.80 meqO2 /kg) compared to control samples (8.20 meqO2 /kg). Moreover, the addition of rosemary and clove change the volatile profile, and increased the retinol levels of ghee (BT: 1.3 mg/kg; CG: 1.9 mg/kg; and RG: 3.05 mg/kg). Liquid-chromatography analyses revealed the presence of targeted phenolic compounds such as carnosic acid, rutin and gallic acid in CG and RG, showing thus, the transfer of polyphenols from aromatic plants into the ghee matrix. On the other hand, the fatty acid composition of ghee remained unchanged. The major components of the prepared ghee samples contributed to rising significantly the human fibroblast migration in wound healing in vitro assay. The results obtained underline that the flavored ghee samples could improve skin regeneration, making them potentials therapeutic ingredients in skincare formulations

    Effects of copper mineralogy and methanobactin on cell growth and sMMO activity in <i>Methylosinus trichosporium</i> OB3b

    Get PDF
    Controls on in situ methanotroph activity are not well understood. One potentially important parameter is copper (Cu) because it is the metal-centre of particulate methane monooxygenase (pMMO), the most active enzyme for oxidizing methane to methanol. Further, Cu-to-cell ratios influence the relative expression of pMMO versus the alternate soluble MMO (sMMO) in some species. However, most methanotroph studies only have assessed readily soluble forms of Cu (e.g. CuCl<sub>2</sub>) and there is a dearth of Cu-related activity data for Cu sources more common in the environment. Here we quantified sMMO activity (as a practical indicator of Cu availability) and growth kinetics in <i>Methylosinus trichosporium</i> OB3b, an organism that expresses both pMMO and sMMO, when grown on Cu-minerals with differing dissolution equilibria to assess how mineral type and methanobactin (mb) might influence in situ methanotroph activity. Mb is a molecule produced by <i>M. trichosporium</i> OB3b that has a high affinity for Cu, reduces Cu toxicity, and may influence Cu availability in terrestrial systems. CuCO<sub>3</sub>.Cu(OH)<sub>2</sub> and CuO were chosen for study based on modelling data, reflecting more and less soluble minerals, respectively, and were found to affect <i>M. trichosporium</i> OB3b activity differently. Cells grew without growth lag and with active pMMO on CuCO<sub>3</sub>.Cu(OH)<sub>2</sub>, regardless of the amount of mineral supplied (<500 ΞΌmoles Cu-total l<sup>&minus;1</sup>). The organism also grew well on CuO; however, significant sMMO activity was retained up to 50 ΞΌmoles Cu-total l<sup>&minus;1</sup>, although sMMO activity was suppressed by supplemental mb and-or direct cell-mineral contact. Mb addition increased growth rates (<i>p</i> < 0.05) with both minerals. Results show mb broadly stimulates growth, but Cu mineralogy and mb dictate whether sMMO or pMMO is active in the cells. This explains why sMMO activity has been seen in soils with high Cu and also has implications for predicting dominant MMO activity in terrestrial bioremediation applications

    A four-helix bundle stores copper for methane oxidation

    Get PDF
    Methane-oxidising bacteria (methanotrophs) require large quantities of copper for the membrane-bound (particulate) methane monooxygenase (pMMO). Certain methanotrophs are also able to switch to using the iron-containing soluble MMO (sMMO) to catalyse methane oxidation, with this switchover regulated by copper. MMOs are Nature’s primary biological mechanism for suppressing atmospheric levels of methane, a potent greenhouse gas. Furthermore, methanotrophs and MMOs have enormous potential in bioremediation and for biotransformations producing bulk and fine chemicals, and in bioenergy, particularly considering increased methane availability from renewable sources and hydraulic fracturing of shale rock. We have discovered and characterised a novel copper storage protein (Csp1) from the methanotroph Methylosinus trichosporium OB3b that is exported from the cytosol, and stores copper for pMMO. Csp1 is a tetramer of 4-helix bundles with each monomer binding up to 13 Cu(I) ions in a previously unseen manner via mainly Cys residues that point into the core of the bundle. Csp1 is the first example of a protein that stores a metal within an established protein-folding motif. This work provides a detailed insight into how methanotrophs accumulate copper for the oxidation of methane. Understanding this process is essential if the wide-ranging biotechnological applications of methanotrophs are to be realised. Cytosolic homologues of Csp1 are present in diverse bacteria thus challenging the dogma that such organisms do not use copper in this location

    Laparoscopic right hemicolectomy: the SICE (Societ\ue0 Italiana di Chirurgia Endoscopica e Nuove Tecnologie) network prospective trial on 1225 cases comparing intra corporeal versus extra corporeal ileo-colic side-to-side anastomosis

    Get PDF
    Background: While laparoscopic approach for right hemicolectomy (LRH) is considered appropriate for the surgical treatment of both malignant and benign diseases of right colon, there is still debate about how to perform the ileo-colic anastomosis. The ColonDxItalianGroup (CoDIG) was designed as a cohort, observational, prospective, multi-center national study with the aims of evaluating the surgeons\u2019 attitude regarding the intracorporeal (ICA) or extra-corporeal (ECA) anastomotic technique and the related surgical outcomes. Methods: One hundred and twenty-five Surgical Units experienced in colorectal and advanced laparoscopic surgery were invited and 85 of them joined the study. Each center was asked not to change its surgical habits. Data about demographic characteristics, surgical technique and postoperative outcomes were collected through the official SICE website database. One thousand two hundred and twenty-five patients were enrolled between March 2018 and September 2018. Results: ICA was performed in 70.4% of cases, ECA in 29.6%. Isoperistaltic anastomosis was completed in 85.6%, stapled in 87.9%. Hand-sewn enterotomy closure was adopted in 86%. Postoperative complications were reported in 35.4% for ICA and 50.7% for ECA; no significant difference was found according to patients\u2019 characteristics and technologies used. Median hospital stay was significantly shorter for ICA (7.3 vs. 9 POD). Postoperative pain in patients not prescribed opioids was significantly lower in ICA group. Conclusions: In our survey, a side-to-side isoperistaltic stapled ICA with hand-sewn enterotomy closure is the most frequently adopted technique to perform ileo-colic anastomosis after any indications for elective LRH. According to literature, our study confirmed better short-term outcomes for ICA, with reduction of hospital stay and postoperative pain. Trial registration: Clinical trial (Identifier: NCT03934151)

    Large Scale Association Analysis Identifies Three Susceptibility Loci for Coronary Artery Disease

    Get PDF
    Genome wide association studies (GWAS) and their replications that have associated DNA variants with myocardial infarction (MI) and/or coronary artery disease (CAD) are predominantly based on populations of European or Eastern Asian descent. Replication of the most significantly associated polymorphisms in multiple populations with distinctive genetic backgrounds and lifestyles is crucial to the understanding of the pathophysiology of a multifactorial disease like CAD. We have used our Lebanese cohort to perform a replication study of nine previously identified CAD/MI susceptibility loci (LTA, CDKN2A-CDKN2B, CELSR2-PSRC1-SORT1, CXCL12, MTHFD1L, WDR12, PCSK9, SH2B3, and SLC22A3), and 88 genes in related phenotypes. The study was conducted on 2,002 patients with detailed demographic, clinical characteristics, and cardiac catheterization results. One marker, rs6922269, in MTHFD1L was significantly protective against MI (ORβ€Š=β€Š0.68, pβ€Š=β€Š0.0035), while the variant rs4977574 in CDKN2A-CDKN2B was significantly associated with MI (ORβ€Š=β€Š1.33, pβ€Š=β€Š0.0086). Associations were detected after adjustment for family history of CAD, gender, hypertension, hyperlipidemia, diabetes, and smoking. The parallel study of 88 previously published genes in related phenotypes encompassed 20,225 markers, three quarters of which with imputed genotypes The study was based on our genome-wide genotype data set, with imputation across the whole genome to HapMap II release 22 using HapMap CEU population as a reference. Analysis was conducted on both the genotyped and imputed variants in the 88 regions covering selected genes. This approach replicated HNRNPA3P1-CXCL12 association with CAD and identified new significant associations of CDKAL1, ST6GAL1, and PTPRD with CAD. Our study provides evidence for the importance of the multifactorial aspect of CAD/MI and describes genes predisposing to their etiology

    Polymorphisms of βˆ’174G>C and βˆ’572G>C in the Interleukin 6 (IL-6) Gene and Coronary Heart Disease Risk: A Meta-Analysis of 27 Research Studies

    Get PDF
    OBJECTIVE: Elevated serum IL-6 level is a risk factor for coronary heart disease (CHD). The -174 G>C and -572 G>C polymorphisms in the IL-6 gene have previously been shown to modulate IL-6 levels. But the association between the -174 G>C and -572 G>C polymorphisms and the risk of CHD is still unclear. A meta-analysis of all eligible studies was carried out to clarify the role of IL-6 gene polymorphisms in CHD. METHODS AND RESULTS: PubMed, EMBASE, Vip, CNKI and CBM-disc were searched for eligible articles in English and Chinese that were published before October 2010. 27 studies involving 11580 patients with CHD and 17103 controls were included. A meta-analysis was performed for the included articles using the RevMan 5.0 and Stata 10.0 softwares. Overall, the -174 C allele was not significantly associated with CHD risk (ORs = 1.04, 95%CI = 0.98 to 1.10) when compared with the -174 G allele in the additive model, and meta-analysis under other genetic models (dominant, recessive, CC versus GG, and GC versus GG) also did not reveal any significant association. On the contrary, the -572 C allele was associated with a decreased risk of CHD when compared with the -572 G allele (ORs = 0.79, 95%CI = 0.68 to 0.93). Furthermore, analyses under the recessive model (ORs = 0.69, 95% = 0.59 to 0.80) and the allele contrast model (genotype of CC versus GG, ORs = 0.49, 95% = 0.35 to 0.70) yielded similar results. However, statistical significance was not found when the meta-analysis was restricted to studies focusing on European populations, studies with large sample size, and cohort studies by using subgroup analysis. CONCLUSIONS: The -174 G>C polymorphism in the IL-6 gene is not significantly associated with increased risks of CHD. However, The -572 G>C polymorphism may contribute to CHD development. Future investigations with better study design and large number of subjects are needed
    • …
    corecore