1,933 research outputs found

    Bacterial endotoxins: biological properties and mechanisms of action

    Get PDF
    Endotoxins (lipopolysaccharides, LPS) are agents of pathogenicity of Gram-negative bacteria, implicated in the development of Gram-negative shock. Endotoxin reacts with lipopolysaccharide-sensitive cells producing endogenous mediators such as tumour necrosis factor alpha (TNFα). Macrophages are cells mediating the toxic activities of LPS and TNFα is the primary mediator of the lethal action of endotoxin. This review article discusses the various mechanisms by which endotoxin hypersensitivity in bacteria-sensitized animals develops. The paper concludes with a discussion on the possible protective effect of carnitine congeners against the lethal action of LPS

    A non-destructive view with X-rays into the strain state of bronze axes.

    No full text
    In this paper we present a new approach using highly surface sensitive X-ray diffraction methods for archaeometrical investigation highlighted on the Neolithic Axe of Ahneby. Applying the sin2Ψ-method with a scintillation detector and a MAXIM camera setup, both usually applied for material strain analysis on modern metal fabrics. We can distinguish between different production states of bronze axes: Cast, forged and tempered. The method can be applied as a local probe of some 100th of μm2 or integrative on a square centimeter surface area. We applied established synchrotron radiation based methods of material strain mapping and diffraction on a Neolithic bronze axe as well as replicated material for noninvasive analysis. The main goal of the described investigations was to identify the effects upon the bronze objects of post cast surface treatment with stone tools and of heat treatment

    Nodal dynamics, not degree distributions, determine the structural controllability of complex networks

    Get PDF
    Structural controllability has been proposed as an analytical framework for making predictions regarding the control of complex networks across myriad disciplines in the physical and life sciences (Liu et al., Nature:473(7346):167-173, 2011). Although the integration of control theory and network analysis is important, we argue that the application of the structural controllability framework to most if not all real-world networks leads to the conclusion that a single control input, applied to the power dominating set (PDS), is all that is needed for structural controllability. This result is consistent with the well-known fact that controllability and its dual observability are generic properties of systems. We argue that more important than issues of structural controllability are the questions of whether a system is almost uncontrollable, whether it is almost unobservable, and whether it possesses almost pole-zero cancellations.Comment: 1 Figures, 6 page

    The genetic contribution of the NO system at the glutamatergic post-synapse to schizophrenia : further evidence and meta-analysis

    Get PDF
    NO is a pleiotropic signaling molecule and has an important role in cognition and emotion. In the brain, NO is produced by neuronal nitric oxide synthase (NOS-I, encoded by NOS1) coupled to the NMDA receptor via PDZ. interactions; this protein-protein interaction is disrupted upon binding of NOS1 adapter protein (encoded by NOS1AP) to NOS-I. As both NOS1 and NOS1AP were associated with schizophrenia, we here investigated these genes in greater detail by genotyping new samples and conducting a meta-analysis of our own and published data. In doing so, we confirmed association of both genes with schizophrenia and found evidence for their interaction in increasing risk towards disease. Our strongest finding was the NOS1 promoter SNP rs41279104, yielding an odds ratio of 1.29 in the meta-analysis. As findings from heterologous cell systems have suggested that the risk allele decreases gene expression, we studied the effect of the variant on NOS1 expression in human post-mortem brain samples and found that the risk allele significantly decreases expression of NOS1 in the prefrontal cortex. Bioinformatic analyses suggest that this might be due the replacement of six transcription factor binding sites by two new binding sites as a consequence of proxy SNPs. Taken together, our data argue that genetic variance in NOS1 resulting in lower prefrontal brain expression of this gene contributes to schizophrenia liability, and that NOS1 interacts with NOS1AP in doing so. The NOS1-NOS1AP PDZ interface may thus well constitute a novel target for small molecules in at least some forms of schizophrenia. PostprintPeer reviewe

    Toll-like receptor and IL-12 signaling control susceptibility to contact hypersensitivity.

    Get PDF
    Allergic contact hypersensitivity (CHS) is a T cell-mediated inflammatory skin disease. Interleukin (IL)-12 is considered to be important in the generation of the allergen-specific T cell response. Loss of IL-12 function in IL-12Rbeta2-deficient mice, however, did not ameliorate the allergic immune response, suggesting alternate IL-12-independent pathways in the induction of CHS. Because exposure to contact allergens always takes place in the presence of microbial skin flora, we investigated the potential role of Toll-like receptors (TLRs) in the induction of CHS. Using mice deficient in TLR4, the receptor for bacterial lipopolysaccharide (LPS), IL-12 receptor (R) beta2, or both, we show that the concomitant absence of TLR4 and IL-12Rbeta2, but not the absence of TLR4 or IL-12Rbeta2 alone, prevented DC-mediated sensitization, generation of effector T cells, and the subsequent CHS response to 2,4,6-trinitro-1-chlorobenzene (TNCB), oxazolone, and fluorescein isothiocyanate. Introduction of the TLR4 transgene into the TLR4/IL-12Rbeta2 mutant restored the CHS inducibility, showing a requirement for TLR4 in IL-12-independent CHS induction. Furthermore, the concomitant absence of TLR2 and TLR4 prevented the induction of CHS to TNCB in IL-12-competent mice. Finally, CHS was inducible in germ-free wild-type and IL-12Rbeta2-deficient mice, but not in germ-free TLR4/IL-12Rbeta2 double deficient mice, suggesting that the necessary TLR activation may proceed via endogenous ligands

    A Simple Method for Analyzing Exome Sequencing Data Shows Distinct Levels of Nonsynonymous Variation for Human Immune and Nervous System Genes

    Get PDF
    To measure the strength of natural selection that acts upon single nucleotide variants (SNVs) in a set of human genes, we calculate the ratio between nonsynonymous SNVs (nsSNVs) per nonsynonymous site and synonymous SNVs (sSNVs) per synonymous site. We transform this ratio with a respective factor f that corrects for the bias of synonymous sites towards transitions in the genetic code and different mutation rates for transitions and transversions. This method approximates the relative density of nsSNVs (rdnsv) in comparison with the neutral expectation as inferred from the density of sSNVs. Using SNVs from a diploid genome and 200 exomes, we apply our method to immune system genes (ISGs), nervous system genes (NSGs), randomly sampled genes (RSGs), and gene ontology annotated genes. The estimate of rdnsv in an individual exome is around 20% for NSGs and 30–40% for ISGs and RSGs. This smaller rdnsv of NSGs indicates overall stronger purifying selection. To quantify the relative shift of nsSNVs towards rare variants, we next fit a linear regression model to the estimates of rdnsv over different SNV allele frequency bins. The obtained regression models show a negative slope for NSGs, ISGs and RSGs, supporting an influence of purifying selection on the frequency spectrum of segregating nsSNVs. The y-intercept of the model predicts rdnsv for an allele frequency close to 0. This parameter can be interpreted as the proportion of nonsynonymous sites where mutations are tolerated to segregate with an allele frequency notably greater than 0 in the population, given the performed normalization of the observed nsSNV to sSNV ratio. A smaller y-intercept is displayed by NSGs, indicating more nonsynonymous sites under strong negative selection. This predicts more monogenically inherited or de-novo mutation diseases that affect the nervous system

    Albumin-coupled methotrexate (MTX-HSA) is a new anti-arthritic drug which acts synergistically to MTX

    Get PDF
    Objective. To evaluate the anti-arthritic effects of the new inflammation-targeted drug MTX-HSA and to investigate whether peripheral blood mononuclear cells (PBMC) are potential target cells for albumin-mediated drug delivery. Methods. The murine model of collagen-induced arthritis (CIA) was used to measure the anti-arthritic effect of MTX, MTX-HSA or a combination of both (n = 30 to 35 per group). In addition, the uptake of fluorescence-labelled albumin (AFLc-HSA) in PBMC of 14 patients with RA was measured by fluorescence-activated cell sorting (FACS). Results. In equivalent doses of 7.5 mg/kg intravenously (IV) twice a week, MTX-HSA is significantly (P<0.02) superior to MTX in inhibiting the development of CIA and reducing the joint count as well as the number of affected paws. When given in lower doses as combination therapy, both drugs act synergistically (P<0.03). A mean of 96, 72 and 64% of the CD14-, CD16- and CD20-positive cells from peripheral blood of rheumatoid arthritis (RA) patients showed an uptake of albumin after incubation with AFLc-HSA in vitro. This finding was not significantly different in comparison to healthy controls. In contrast, the number of CD3-positive cells taking up albumin is increased significantly in RA patients in comparison to controls (26.3 ± 12.9% s.d. vs 11.6 ± 7.3% s.d.; P = 0.005). Conclusion. The data show that the effectiveness of MTX-HSA in CIA is superior to MTX and that both drugs act synergistically. In addition, albumin appears to be taken up by peripheral blood cells, suggesting that they might be one of the potential target cells of this novel anti-arthritic treatment approac

    Combinatorial synthesis of (YxGd1-x)Ba2Cu3Ox superconducting thin films

    Get PDF
    Environmentally friendly water-based YBa2Cu3Ox (YBCO) and GdBa2Cu3Ox (GdBCO) precursor solutions were synthesized to realize thin films by chemical solution deposition. Pure YBCO and GdBCO precursor solutions were used for ink plotting on SrTiO3 substrates and subsequent thermal treatment at the corresponding crystallization temperature. Phase formation of Gd123 requires a higher crystallization temperature of 840 °C compared to the Y123 phase. The critical temperature of YBCO films is about 92 K with a sharp transition into the superconducting state. Micro liter sized ink volumes of YBCO and GdBCO were successfully mixed for two-dimensional ink plotting of a (YxGd1-x)Ba2Cu3Ox film library. A homogeneous surface and no indication of a-axis growth were found in all mixed films

    F18 fluorodeoxyglucose uptake in progressive transformation of germinal centres

    Get PDF
    FDG-PET/CT is a widely established imaging modality for staging, restaging and monitoring therapy response in lymphoma patients. Progressive transformation of germinal centres (PTGC) is a benign condition presenting characteristically as asymptomatic lymphadenopathy. This paper presents a case of a 53-year-old man with a history of Hodgkin’s disease (HD) whose F18 FDG-PET/CT scan showed high uptake in left axillary lymph nodes (SUV 3.8). A subsequent, left axillary lymph node biopsy revealed PTGC. PTGC can present as a false positive finding on FDG-PET/CT in lymphoma patients and biopsy should be done in HD patients in clinical remission but have a positive FDG-PET/CT scan
    • …
    corecore