98 research outputs found

    Identification of two novel mutations in CDHR1 in consanguineous Spanish families with autosomal recessive retinal dystrophy.

    Get PDF
    Inherited retinal dystrophies present extensive phenotypic and genetic heterogeneity, posing a challenge for patients' molecular and clinical diagnoses. In this study, we wanted to clinically characterize and investigate the molecular etiology of an atypical form of autosomal recessive retinal dystrophy in two consanguineous Spanish families. Affected members of the respective families exhibited an array of clinical features including reduced visual acuity, photophobia, defective color vision, reduced or absent ERG responses, macular atrophy and pigmentary deposits in the peripheral retina. Genetic investigation included autozygosity mapping coupled with exome sequencing in the first family, whereas autozygome-guided candidate gene screening was performed by means of Sanger DNA sequencing in the second family. Our approach revealed nucleotide changes in CDHR1; a homozygous missense variant (c.1720C > G, p.P574A) and a homozygous single base transition (c.1485 + 2T > C) affecting the canonical 5' splice site of intron 13, respectively. Both changes co-segregated with the disease and were absent among cohorts of unrelated control individuals. To date, only five mutations in CDHR1 have been identified, all resulting in premature stop codons leading to mRNA nonsense mediated decay. Our work reports two previously unidentified homozygous mutations in CDHR1 further expanding the mutational spectrum of this gene

    A Comprehensive Analysis of Choroideremia: From Genetic Characterization to Clinical Practice.

    Get PDF
    Choroideremia (CHM) is a rare X-linked disease leading to progressive retinal degeneration resulting in blindness. The disorder is caused by mutations in the CHM gene encoding REP-1 protein, an essential component of the Rab geranylgeranyltransferase (GGTase) complex. In the present study, we evaluated a multi-technique analysis algorithm to describe the mutational spectrum identified in a large cohort of cases and further correlate CHM variants with phenotypic characteristics and biochemical defects of choroideremia patients. Molecular genetic testing led to the characterization of 36 out of 45 unrelated CHM families (80%), allowing the clinical reclassification of four CHM families. Haplotype reconstruction showed independent origins for the recurrent p.Arg293* and p.Lys178Argfs*5 mutations, suggesting the presence of hotspots in CHM, as well as the identification of two different unrelated events involving exon 9 deletion. No certain genotype-phenotype correlation could be established. Furthermore, all the patients´ fibroblasts analyzed presented significantly increased levels of unprenylated Rabs proteins compared to control cells; however, this was not related to the genotype. This research demonstrates the major potential of the algorithm proposed for diagnosis. Our data enhance the importance of establish a differential diagnosis with other retinal dystrophies, supporting the idea of an underestimated prevalence of choroideremia. Moreover, they suggested that the severity of the disorder cannot be exclusively explained by the genotype

    Identification of the Photoreceptor Transcriptional Co-Repressor SAMD11 as Novel Cause of Autosomal Recessive Retinitis Pigmentosa

    Get PDF
    Retinitis pigmentosa (RP), the most frequent form of inherited retinal dystrophy is characterized by progressive photoreceptor degeneration. Many genes have been implicated in RP development, but several others remain to be identified. Using a combination of homozygosity mapping, whole-exome and targeted next-generation sequencing, we found a novel homozygous nonsense mutation in SAMD11 in five individuals diagnosed with adult-onset RP from two unrelated consanguineous Spanish families. SAMD11 is ortholog to the mouse major retinal SAM domain (mr-s) protein that is implicated in CRX-mediated transcriptional regulation in the retina. Accordingly, protein-protein network analysis revealed a significant interaction of SAMD11 with CRX. Immunoblotting analysis confirmed strong expression of SAMD11 in human retina. Immunolocalization studies revealed SAMD11 was detected in the three nuclear layers of the human retina and interestingly differential expression between cone and rod photoreceptors was observed. Our study strongly implicates SAMD11 as novel cause of RP playing an important role in the pathogenesis of human degeneration of photoreceptors.This work was supported by several grants from the Spanish Centre for Biomedical Network Research on Rare Diseases (CIBERER)(06/07/0036), Instituto de Salud Carlos III (ISCIII, Spanish Ministry of Health)/FEDER, including FIS (PI013/00226) and RETICS (RD09/0076/00101 and RD12/0034/0010), Ministry of Economy and Competitiveness (MINECO), including FEDER (BFU2012-36845), and BIO2011-27069, Conselleria de Educació of the Valencia Community (PROMETEOII/2014/025), Spanish National Organization of the Blind (ONCE) and the Spanish Fighting Blindness Foundation (FUNDALUCE). M.C. was sponsored by the Miguel Servet Program for Researchers in the Spanish National Health Service (CP12/03256) and RSA by Sara Borrel Postdoctoral Program (CD12/00676), both from the ISCIII/FEDER. A.A-F. was sponsored by CIBERER, RPC is supported by Fundación Conchita Rábago (FCR), L.C is sponsored by RETICS (RD12/0034/0010) from ISCIII and L.d.S. was supported by CAPES Foundation, Ministry of Education of Brazil

    Utility of a thematic network in primary health care: a controlled interventional study in a rural area

    Get PDF
    BACKGROUND: UniNet is an Internet-based thematic network for a virtual community of users (VCU). It supports a virtual multidisciplinary community for physicians, focused on the improvement of clinical practice. This is a study of the effects of a thematic network such as UniNet on primary care medicine in a rural area, specifically as a platform of communication between specialists at the hospital and doctors in the rural area. METHODS: In order to study the effects of a thematic network such as UniNet on primary care medicine in a rural area, we designed an interventional study that included a control group. The measurements included the number of patient displacements due to disease, number of patient hospital stays and the number of prescriptions of drugs of low therapeutic utility and generic drug prescriptions by doctors. These data were analysed and compared with those of the control center. RESULTS: Our study showed positive changes in medical practice, reflected in the improvement of the evaluated parameters in the rural health area where the interventional study was carried out, compared with the control area. We discuss the strengths and weaknesses of UniNet as a potential medium to improve the quality of medical care in rural areas. CONCLUSION: The rural doctors had an effective, useful, user-friendly and cheap source of medical information that may have contributed to the improvement observed in the medical quality indices

    A Pivotal Role of Lumbar Spinothalamic Cells in the Regulation of Ejaculation via Intraspinal Connections

    Full text link
    Introduction.  A population of lumbar spinothalamic cells (LSt cells) has been demonstrated to play a pivotal role in ejaculatory behavior and comprise a critical component of the spinal ejaculation generator. LSt cells are hypothesized to regulate ejaculation via their projections to autonomic and motor neurons in the lumbosacral spinal cord. Aim.  The current study tested the hypothesis that ejaculatory reflexes are dependent on LSt cells via projections within the lumbosacral spinal cord. Methods.  Male rats received intraspinal injections of neurotoxin saporin conjugated to substance P analog, previously shown to selectively lesion LSt cells. Two weeks later, males were anesthetized and spinal cords were transected. Subsequently, males were subjected to ejaculatory reflex paradigms, including stimulation of the dorsal penile nerve (DPN), urethrogenital stimulation or administration of D3 agonist 7‐OH‐DPAT. Electromyographic recordings of the bulbocavernosus muscle (BCM) were analyzed for rhythmic bursting characteristic of the expulsion phase of ejaculation. In addition, a fourth commonly used paradigm for ejaculation and erections in unanesthetized, spinal‐intact male rats was utilized: the ex copula reflex paradigm. Main Outcome Measures.  LSt cell lesions were predicted to prevent rhythmic bursting of BCM following DPN, urethral, or pharmacological stimulation, and emissions in the ex copula paradigm. In contrast, LSt cell lesions were not expected to abolish erectile function as measured in the ex copula paradigm. Results.  LSt cell lesions prevented rhythmic contractions of the BCM induced by any of the ejaculatory reflex paradigms in spinalized rats. However, LSt cell lesions did not affect erectile function nor emissions determined in the ex copula reflex paradigm. Conclusions.  These data demonstrate that LSt cells are essential for ejaculatory, but not erectile reflexes, as previously reported for mating animals. Moreover, LSt cells mediate ejaculation via projections within the spinal cord, presumably to autonomic and motor neurons. Staudt MD, Truitt WA, McKenna KE, de Oliveira CVR, Lehman MN, and Coolen LM. A pivotal role of lumbar spinothalamic cells in the regulation of ejaculation via intraspinal connections. J Sex Med 2012;9:2256–2265.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/93690/1/j.1743-6109.2011.02574.x.pd

    Genetic landscape of 6089 inherited retinal dystrophies affected cases in Spain and their therapeutic and extended epidemiological implications

    Full text link
    Inherited retinal diseases (IRDs), defined by dysfunction or progressive loss of photoreceptors, are disorders characterized by elevated heterogeneity, both at the clinical and genetic levels. Our main goal was to address the genetic landscape of IRD in the largest cohort of Spanish patients reported to date. A retrospective hospital-based cross-sectional study was carried out on 6089 IRD affected individuals (from 4403 unrelated families), referred for genetic testing from all the Spanish autonomous communities. Clinical, demographic and familiar data were collected from each patient, including family pedigree, age of appearance of visual symptoms, presence of any systemic findings and geographical origin. Genetic studies were performed to the 3951 families with available DNA using different molecular techniques. Overall, 53.2% (2100/3951) of the studied families were genetically characterized, and 1549 different likely causative variants in 142 genes were identified. The most common phenotype encountered is retinitis pigmentosa (RP) (55.6% of families, 2447/4403). The most recurrently mutated genes were PRPH2, ABCA4 and RS1 in autosomal dominant (AD), autosomal recessive (AR) and X-linked (XL) NON-RP cases, respectively; RHO, USH2A and RPGR in AD, AR and XL for non-syndromic RP; and USH2A and MYO7A in syndromic IRD. Pathogenic variants c.3386G > T (p.Arg1129Leu) in ABCA4 and c.2276G > T (p.Cys759Phe) in USH2A were the most frequent variants identified. Our study provides the general landscape for IRD in Spain, reporting the largest cohort ever presented. Our results have important implications for genetic diagnosis, counselling and new therapeutic strategies to both the Spanish population and other related populations.This work was supported by the Instituto de Salud Carlos III (ISCIII) of the Spanish Ministry of Health (FIS; PI16/00425 and PI19/00321), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER, 06/07/0036), IIS-FJD BioBank (PT13/0010/0012), Comunidad de Madrid (CAM, RAREGenomics Project, B2017/BMD-3721), European Regional Development Fund (FEDER), the Organización Nacional de Ciegos Españoles (ONCE), Fundación Ramón Areces, Fundación Conchita Rábago and the University Chair UAM-IIS-FJD of Genomic Medicine. Irene Perea-Romero is supported by a PhD fellowship from the predoctoral Program from ISCIII (FI17/00192). Ionut F. Iancu is supported by a grant from the Comunidad de Madrid (CAM, PEJ-2017-AI/BMD7256). Marta del Pozo-Valero is supported by a PhD grant from the Fundación Conchita Rábago. Berta Almoguera is supported by a Juan Rodes program from ISCIII (JR17/00020). Pablo Minguez is supported by a Miguel Servet program from ISCIII (CP16/00116). Marta Corton is supported by a Miguel Servet program from ISCIII (CPII17/00006). The funders played no role in study design, data collection, data analysis, manuscript preparation and/or publication decisions

    A giant exoplanet orbiting a very-low-mass star challenges planet formation models

    Get PDF
    Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts constraints on the planet accretion and migration rates. Disk instabilities may be more efficient in forming planets than previously thought
    corecore