38 research outputs found

    Effect of commercial breakfast fibre cereals compared with corn flakes on postprandial blood glucose, gastric emptying and satiety in healthy subjects: a randomized blinded crossover trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dietary fibre food intake is related to a reduced risk of developing diabetes mellitus. However, the mechanism of this effect is still not clear. The aim of this study was to evaluate the effect of commercial fibre cereals on the rate of gastric emptying, postprandial glucose response and satiety in healthy subjects.</p> <p>Methods</p> <p>Gastric emptying rate (GER) was measured by standardized real time ultrasonography. Twelve healthy subjects were assessed using a randomized crossover blinded trial. The subjects were examined after an 8 hour fast and after assessment of normal fasting blood glucose level. Satiety scores were estimated and blood glucose measurements were taken before and at 0, 20, 30, 40, 60, 80, 100 and 120 min after the end of the meal. GER was calculated as the percentage change in the antral cross-sectional area 15 and 90 min after ingestion of sour milk with corn flakes (GER1), cereal bran flakes (GER2) or wholemeal oat flakes (GER3).</p> <p>Results</p> <p>The median value was, respectively, 42% for GER1, 33 % for GER2 and 51% for GER3. The difference between the GER after ingestion of bran flakes compared to wholemeal oat flakes was statistically significant (p = 0.023). The postprandial delta blood glucose level was statistically significantly lower at 40 min (p = 0.045) and 120 min (p = 0.023) after the cereal bran flakes meal. There was no statistical significance between the areas under the curve (AUCs) of the cereals as far as blood glucose and satiety were concerned.</p> <p>Conclusion</p> <p>The result of this study demonstrates that the intake of either bran flakes or wholemeal oat flakes has no effect on the total postprandial blood glucose response or satiety when compared to corn flakes. However, the study does show that the intake of cereal bran flakes slows the GER when compared to oat flakes and corn flakes, probably due to a higher fibre content. Since these products do not differ in terms of glucose response and satiety on healthy subjects, they should be considered equivalent in this respect.</p> <p>Trial registration</p> <p>ISRCTN90535566</p

    InfluĂȘncia do treinamento excĂȘntrico nas razĂ”es de torque de flexores/extensores do joelho

    Get PDF
    O treinamento excĂȘntrico (Texc) produz adaptaçÔes musculares que minimizam a ocorrĂȘncia de lesĂ”es e Ă© usado em reabilitação e treinamento de força, mas pouco se sabe sobre seus efeitos no equilĂ­brio entre mĂșsculos antagonistas do joelho. As razĂ”es de torque permitem determinar esses desequilĂ­brios musculares. O objetivo do estudo foi avaliar os efeitos de 12 semanas de Texc nas razĂ”es de torque excĂȘntrico (Iexc:Qexc) entre os mĂșsculos isquiotibiais (I) e quadrĂ­ceps (Q). Vinte e quatro sujeitos saudĂĄveis do sexo masculino foram distribuĂ­dos nos grupos controle (GC, n=13, idade 27,7±4,6 anos) e experimental (GE, n=11, idade 28,5±9,5 anos), submetido ao treinamento. Um dinamĂŽmetro isocinĂ©tico foi utilizado para o Texc (velocidade de -60 Âș/s) e para as avaliaçÔes (uma a cada quatro semanas). As razĂ”es de torque medidas foram comparadas estatisticamente entre os grupos e intragrupos entre as avaliaçÔes, com nĂ­vel de significĂąncia de 5%. No GE, foi observada redução das razĂ”es de torque da avaliação (AV) inicial para as demais: AV1x AV2, p=0,005; AV1x AV3, p=0,001; e AV1x AV4, pEccentric training produces skeletal muscle adaptations that help preventing muscle injuries, being often used in rehabilitation and physical fitness programs, but little is known of the effects of this training in the balance between knee antagonistic muscles. Torque ratios allow determining such balance. The purpose of this study was to assess the effect of a 12-week eccentric training program on the eccentric torque ratio between hamstring and quadriceps muscles (Hecc:Qecc). Twenty-four healthy male subjects were assigned to either a control group (CG, n=13, aged 27.7±4.6 years) or an experimental group (EG, n=11, aged 28.5±9.5 years). An isokinetic dinamometer was used (angular velocity -60Âș/s) for both the eccentric training and the assessments, performed every four weeks. Torque ratios measured were statistically compared between groups and intragroups between assessments, with (significance level set at p<0.05. In EG a reduction in torque ratios was found from the initial assessment (AS1) to the other three ones: AS1x AS2, p=0.005; AS1x AS3, p=0.001; and AS1x AS4, p<0.001. At the last evaluation, EG torque ratios were lower than those of CG's (p=0.041). Eccentric training hence changes balance between knee flexor and extensor muscles: a 12-week training program leads to lower Hecc:Qecc ratio and to extensor torque increase, with no significant change in flexor torque, being thus suitable for rehabilitation aimed at strengthening knee extensor muscles

    Faecal microbiota transplant from aged donor mice affects spatial learning and memory via modulating hippocampal synaptic plasticity- and neurotransmission-related proteins in young recipients

    Get PDF
    Background: The gut-brain axis and the intestinal microbiota are emerging as key players in health and disease. Shifts in intestinal microbiota composition affect a variety of systems; however, evidence of their direct impact on cognitive functions is still lacking. We tested whether faecal microbiota transplant (FMT) from aged donor mice into young adult recipients altered the hippocampus, an area of the central nervous system (CNS) known to be affected by the ageing process and related functions. Results: Young adult mice were transplanted with the microbiota from either aged or age-matched donor mice. Following transplantation, characterization of the microbiotas and metabolomics profiles along with a battery of cognitive and behavioural tests were performed. Label-free quantitative proteomics was employed to monitor protein expression in the hippocampus of the recipients. We report that FMT from aged donors led to impaired spatial learning and memory in young adult recipients, whereas anxiety, explorative behaviour and locomotor activity remained unaffected. This was paralleled by altered expression of proteins involved in synaptic plasticity and neurotransmission in the hippocampus. Also, a strong reduction of bacteria associated with short-chain fatty acids (SCFAs) production (Lachnospiraceae, Faecalibaculum, and Ruminococcaceae) and disorders of the CNS (Prevotellaceae and Ruminococcaceae) was observed. Finally, the detrimental effect of FMT from aged donors on the CNS was confirmed by the observation that microglia cells of the hippocampus fimbria, acquired an ageing-like phenotype; on the contrary, gut permeability and levels of systemic and local (hippocampus) cytokines were not affected. Conclusion: These results demonstrate that age-associated shifts of the microbiota have an impact on protein expression and key functions of the CNS. Furthermore, these results highlight the paramount importance of the gut-brain axis in ageing and provide a strong rationale to devise therapies aiming to restore a young-like microbiota to improve cognitive functions and the declining quality of life in the elderly

    Microbial shifts in the aging mouse gut

    Get PDF
    YesBackground: The changes that occur in the microbiome of aging individuals are unclear, especially in light of the imperfect correlation of frailty with age. Studies in older human subjects have reported subtle effects, but these results may be confounded by other variables that often change with age such as diet and place of residence. To test these associations in a more controlled model system, we examined the relationship between age, frailty, and the gut microbiome of female C57BL/6 J mice. Results: The frailty index, which is based on the evaluation of 31 clinical signs of deterioration in mice, showed a near-perfect correlation with age. We observed a statistically significant relationship between age and the taxonomic composition of the corresponding microbiome. Consistent with previous human studies, the Rikenellaceae family, which includes the Alistipes genus, was the most significantly overrepresented taxon within middle-aged and older mice. The functional profile of the mouse gut microbiome also varied with host age and frailty. Bacterial-encoded functions that were underrepresented in older mice included cobalamin (B12) and biotin (B7) biosynthesis, and bacterial SOS genes associated with DNA repair. Conversely, creatine degradation, associated with muscle wasting, was overrepresented within the gut microbiomes of the older mice, as were bacterial-encoded ÎČ-glucuronidases, which can influence drug-induced epithelial cell toxicity. Older mice also showed an overabundance of monosaccharide utilization genes relative to di-, oligo-, and polysaccharide utilization genes, which may have a substantial impact on gut homeostasis. Conclusion: We have identified taxonomic and functional patterns that correlate with age and frailty in the mouse microbiome. Differences in functions related to host nutrition and drug pharmacology vary in an age-dependent manner, suggesting that the availability and timing of essential functions may differ significantly with age and frailty. Future work with larger cohorts of mice will aim to separate the effects of age and frailty, and other factors.This work was supported by the Canadian Institutes of Health Research (CIHR) through an Emerging Team Grant to RGB, CIHR Operating Grants to Langille et al. Microbiome 2014, 2:50 Page 10 of 12 http://www.microbiomejournal.com/content/2/1/50 SEH (MOP 126018) and RAR (MOP 93718), and a CIHR Fellowship to MGIL. Infrastructure was supported by the Canada Foundation for Innovation through a grant to RGB. RGB also acknowledges the support of the Canada Research Chairs program

    Combining microdialysis and near-infrared spectroscopy for studying effects of low-load repetitive work on the intramuscular chemistry in trapezius myalgia.

    No full text
    Epidemiological research provides strong evidence for a link between repetitive work (RW) and the development of chronic trapezius myalgia (TM). The aims were to further elucidate if an accumulation of sensitising substances or impaired oxygenation is evident in painful muscles during RW. Females with TM (n = 14) were studied during rest, 30 minutes RW and 60 minutes recovery. Microdialysate samples were obtained to determine changes in intramuscular microdialysate (IMMD) [glutamate], [PGE(2)], [lactate], and [pyruvate] (i.e., [concentration]) relative to work. Muscle oxygenation (%StO(2)) was assessed using near-infrared spectroscopy. During work, all investigated substances, except PGE(2), increased significantly: [glutamate] (54%, P &lt; .0001), [lactate] (26%, P &lt; .005), [pyruvate] (19%, P &lt; .0001), while the %StO(2) decreased (P &lt; .05). During recovery [PGE(2)] decreased (P &lt; .005), [lactate] remained increased (P &lt; .001), [pyruvate] increased progressively (P &lt; .0001), and %StO(2) had returned to baseline. Changes in substance concentrations and oxygenation in response to work indicate normal increase in metabolism but no ongoing inflammation in subjects with TM

    Changes in interstitial noradrenaline, trapezius muscle activity and oxygen saturation during low-load work and recovery

    No full text
    Both physical as well as mental demands result in an increased activity in the sympathetic nervous system (SNS) with changes in blood-pressure and heart-rate. Through local release of catecholamines, e.g. noradrenaline (NAd) SNS exerts various actions at the muscle level. The aims of this study were to investigate the effects of low-load repetitive work alone and in combination with mental demands on local muscle interstitial noradrenaline concentration [NAd](i), muscle activity and oxygenation, assessed with microdialysis, surface electromyography, and near-infrared spectroscopy, respectively. Healthy females (n = 15) were exposed to (1) 30 min repetitive work (RW) and (2) 30 min repetitive work with superimposed mental load (RWML) on two different occasions. Muscle [NAd](i) and muscle activity increased significantly in response to RW, but did not increase further during RWML. For RW, [NAd](i) was found to be inversely correlated to muscle activity. Oxygenation decreased significantly during work, independently of occasion. Our findings indicate that low-load work causes significantly increased trapezius muscle [NAd](i) in healthy females, and short periods of superimposed mental load do not add to this increase and further, that both muscle activity and oxygenation were unaffected by the superimposed mental load

    Changes in interstitial noradrenaline, trapezius muscle activity and oxygen saturation during low-load work and recovery.

    No full text
    Both physical as well as mental demands result in an increased activity in the sympathetic nervous system (SNS) with changes in blood-pressure and heart-rate. Through local release of catecholamines, e.g. noradrenaline (NAd) SNS exerts various actions at the muscle level. The aims of this study were to investigate the effects of low-load repetitive work alone and in combination with mental demands on local muscle interstitial noradrenaline concentration [NAd](i), muscle activity and oxygenation, assessed with microdialysis, surface electromyography, and near-infrared spectroscopy, respectively. Healthy females (n = 15) were exposed to (1) 30 min repetitive work (RW) and (2) 30 min repetitive work with superimposed mental load (RWML) on two different occasions. Muscle [NAd](i) and muscle activity increased significantly in response to RW, but did not increase further during RWML. For RW, [NAd](i) was found to be inversely correlated to muscle activity. Oxygenation decreased significantly during work, independently of occasion. Our findings indicate that low-load work causes significantly increased trapezius muscle [NAd](i) in healthy females, and short periods of superimposed mental load do not add to this increase and further, that both muscle activity and oxygenation were unaffected by the superimposed mental load

    AA narrative review of Achilles tendon ruptures in racket sports

    No full text
    This review aims to enlighten the existing research about Achilles tendon ruptures (ATR) in racket sports. Further, this review will also include the acute management, rehabilitation, treatment and prognosis of an ATR. ATR is a common injury among individuals playing racket sports. However, the literature is limited and not up to date. Previous research claims that up to 70 percent of all ATR is related to sports activities where racket sports dominate. A large number of patients sustaining an ATR return to sport within a year from injury.
    corecore