221 research outputs found

    Polynuclear complexes as precursor templates for hierarchical microporous graphitic carbon: An unusual approach

    Get PDF
    YesA highly porous carbon was synthesized using a coordination complex as an unusual precursor. During controlled pyrolysis, a trinuclear copper complex, [CuII3Cl4(H2L)2]·CH3OH, undergoes phase changes with melt and expulsion of different gases to produce a unique morphology of copper-doped carbon which, upon acid treatment, produces highly porous graphitic carbon with a surface area of 857 m2 g–1 and a gravimetric hydrogen uptake of 1.1 wt % at 0.5 bar pressure at 77 K.EPSRC (EP/R01650X/1 for VPT, and EP/E040071/1 for MT) and the University of Bristo

    Selective CO₂ capture in metal-organic frameworks with azine-functionalized pores generated by mechanosynthesis

    Get PDF
    Two new three-dimensional porous Zn(II)-based metal-organic frameworks, containing azine-functionalized pores, have been readily and quickly isolated via mechanosynthesis, by using a nonlinear dicarboxylate and linear N-donor ligands. The use of nonfunctionalized and methyl-functionalized N-donor ligands has led to the formation of frameworks with different topologies and metal-ligand connectivities and therefore different pore sizes and accessible volumes. Despite this, both metal-organic frameworks (MOFs) possess comparable BET surface areas and CO₂ uptakes at 273 and 298 K at 1 bar. The network with narrow and interconnected pores in three dimensions shows greater affinity for CO compared to the network with one-dimensional and relatively large pores-attributable to the more effective interactions with the azine groups

    Tandem Mass Spectrometry Measurement of the Collision Products of Carbamate Anions Derived from CO2 Capture Sorbents: Paving the Way for Accurate Quantitation

    Get PDF
    The reaction between CO2 and aqueous amines to produce a charged carbamate product plays a crucial role in post-combustion capture chemistry when primary and secondary amines are used. In this paper, we report the low energy negative-ion CID results for several anionic carbamates derived from primary and secondary amines commonly used as post-combustion capture solvents. The study was performed using the modern equivalent of a triple quadrupole instrument equipped with a T-wave collision cell. Deuterium labeling of 2-aminoethanol (1,1,2,2,-d4-2-aminoethanol) and computations at the M06-2X/6-311++G(d,p) level were used to confirm the identity of the fragmentation products for 2-hydroxyethylcarbamate (derived from 2-aminoethanol), in particular the ions CN−, NCO− and facile neutral losses of CO2 and water; there is precedent for the latter in condensed phase isocyanate chemistry. The fragmentations of 2-hydroxyethylcarbamate were generalized for carbamate anions derived from other capture amines, including ethylenediamine, diethanolamine, and piperazine. We also report unequivocal evidence for the existence of carbamate anions derived from sterically hindered amines (Tris(2-hydroxymethyl)aminomethane and 2-methyl-2-aminopropanol). For the suite of carbamates investigated, diagnostic losses include the decarboxylation product (−CO2, 44 mass units), loss of 46 mass units and the fragments NCO− (m/z 42) and CN− (m/z 26). We also report low energy CID results for the dicarbamate dianion (−O2CNHC2H4NHCO2−) commonly encountered in CO2 capture solution utilizing ethylenediamine. Finally, we demonstrate a promising ion chromatography-MS based procedure for the separation and quantitation of aqueous anionic carbamates, which is based on the reported CID findings. The availability of accurate quantitation methods for ionic CO2 capture products could lead to dynamic operational tuning of CO2 capture-plants and, thus, cost-savings via real-time manipulation of solvent regeneration energies

    Atomically well-defined thiolate gold clusters as catalysts for aerobic oxidation reactions

    No full text
    SSCI-VIDE+CDFA+ADMInternational audienceNon

    Emerging 1D and 2D d10 Coinage Metal Organic Chalcogenolate Coordination Polymers for Optical Technologies

    No full text
    SSCI-VIDE+CDFA+ADMInternational audienceHybrid materials with chalcogenate ligands (ER = SR, SeR, TeR) and d10 coinage metals (M(I) = Cu, Ag and Au) are known for a long time mainly in the domains of biology and pharmaceutics. Indeed, copper-thiolates are present in most of the living organisms as metalloproteins, silver-thiolates are recognized for their anti-bacterial activity and some gold-thiolates, as the Myochrysine, have been used as antiarthritic drugs. Today, the d10 coinage Metal Organic Chalcogenates (MOCs) are gaining a growing relevance in materials science for their semiconductivity and photoluminescence properties.1 Indeed, the photoemission of these compounds is attributed to the presence of d10 coinage metals and their ability to display metallophilic interactions. Neutral MOCs, defined with the formula [M(ER)]n, can form cyclic oligomers and extended coordination polymers with anisotropic 1D or 2D structures. In this presentation, we will show the variety of the chain-like and lamellar structures of these MOCs, associated to a rich palette of photophysical properties (Fig. 1).2 Thus, some compounds exhibit high quantum yield (~70 %) in the solid state and some have an intrinsic triple emission associated with luminescence thermochromism allowing optical temperature sensing. This study will show the great potential of the MOCs as phosphorescent hybrid materials and their great potential in electronic devices, sensors or photocatalysis.[1].O. Veselska; A. Demessence, Coord. Chem. Rev., 2018, 355, 240.[2].(a) C. Lavenn; L. Okhrimenko; N. Guillou; M. Monge; G. Ledoux; C. Dujardin; R. Chiriac; A. Fateeva; A. Demessence, J. Mater Chem. C, 2015, 3, 4115; (b) C. Lavenn; N. Guillou; M. Monge; D. PodbevĆĄek; G. Ledoux; A. Fateeva; A. Demessence, Chem. Commun., 2016, 52, 9063; (c) O. Veselska; L. Okhrimenko; N. Guillou; D. Podbevsek; G. Ledoux; C. Dujardin; M. Monge; D. M. Chevrier; R. Yang; P. Zhang; A. Fateeva; A. Demessence, J. Mater Chem. C, 2017, 5, 9843; (d) O. Veselska; D. PodbevĆĄek; G. Ledoux; A. Fateeva; A. Demessence, Chem. Commun., 2017, 53, 12225; (e) O. Veselska; L. Cai; D. Podbevsek; G. Ledoux; N. Guillou; G. Pilet; A. Fateeva; A. Demessence, Inorg. Chem., 2018, 57, 2736
    • 

    corecore