360 research outputs found

    Effect of channel block on the spiking activity of excitable membranes in a stochastic Hodgkin-Huxley model

    Full text link
    The influence of intrinsic channel noise on the spontaneous spiking activity of poisoned excitable membrane patches is studied by use of a stochastic generalization of the Hodgkin-Huxley model. Internal noise stemming from the stochastic dynamics of individual ion channels is known to affect the collective properties of the whole ion channel cluster. For example, there exists an optimal size of the membrane patch for which the internal noise alone causes a regular spontaneous generation of action potentials. In addition to varying the size of ion channel clusters, living organisms may adapt the densities of ion channels in order to optimally regulate the spontaneous spiking activity. The influence of channel block on the excitability of a membrane patch of certain size is twofold: First, a variation of ion channel densities primarily yields a change of the conductance level. Second, a down-regulation of working ion channels always increases the channel noise. While the former effect dominates in the case of sodium channel block resulting in a reduced spiking activity, the latter enhances the generation of spontaneous action potentials in the case of a tailored potassium channel blocking. Moreover, by blocking some portion of either potassium or sodium ion channels, it is possible to either increase or to decrease the regularity of the spike train.Comment: 10 pages, 3 figures, published 200

    Investigating the History of Aubrites Using X-Ray Computed Tomography and Bulk Partition Coefficients

    Get PDF
    The aubrites are a unique group of differentiated meteorites that formed on parent bodies with oxygen fugacities (O2) from ~2 to ~6 log units below the iron-wustite buffer. At these highly reduced condi- tions, elements deviate from the geochemical behavior exhibited at terrestrial O2, and may form FeO-poor silicates, Si-bearing metals, and exotic sulfides. Geochemical examinations of aubrites, such as mineral major-element compositions, bulk-rock compositions, O isotopes, and crystallization ages, are crucial to understand their formation and evolution at extreme O2 conditions. In this study, we determine partitioning relationships of elements between bulk silicate, sulfide, and metal phases within aubrites, and compare the results to partition coefficients determined from petrologic experiments run under mercurian conditions. While previous studies have described the petrology and 2D modal abundances of aubrites, this work provides the first 3D view of aubritic mineralogies, which are com- pared to the available 2D data. Constraints of 3D modal abundances will increase the accuracy of computed bulk distribution coefficients; therefore, 3D scans of aubrite samples are imperative. We utilize X-ray computed tomogra- phy (XCT) to non-destructively analyze the distribution and abundances of mineral phases in aubrites and locate composite clasts of sulfide grains for future analysis

    The Geochemistry of Aubrites: Investigating Reduced Parent Bodies

    Get PDF
    The aubrites (~30 known meteorites) are a unique group of differentiated meteorites that formed on asteroids with oxygen fugacities (O2) from ~2 to ~6 log units below the iron-wstite buffer [12]. At these highly reduced conditions, elements deviate from the geochemical behavior exhibited at terrestrial O2, forming FeO-poor silicates, Si-bearing metals, and exotic sulfides [3]. Here we examine the 3D mineralogy and the geochemistry of fourteen aubrites, including mineral major element compositions, bulk-rock compositions, and oxygen isotopic compositions to understand their formation and evolution at extreme O2 conditions. While previous studies have described the petrology and 2D modal abundances of aubrites, this work investigates the 3D modal mineralogies of silicate, metal, and sulfide phases in aubrite samples, which are then com-pared to the available 2D data. We utilize X-ray computed tomography (XCT) to non-destructively analyze the distribution and abundances of mineral phases in aubrites and locate composite clasts of sulfide grains for future analysis

    The Grizzly, April 6, 2017

    Get PDF
    Active Minds Decides to Tone it Down Taupe for Autism Acceptance • Student Government Election Results Come In • STAT Hosts Town Hall to Provide Transparency on Where Tuition Goes • Core Curriculum Updates Underway for Fall 2018 • Eco-Conscious Students Travel Sustainably with UC Bikeshare • Annual Spring Concert Takes on a New Look • Opinions: Light it Up Blue is More Harmful than Helpful; Here\u27s Why Active Minds Toned it Down Taupe • The Woman Behind the Sports: Laura Moliken, Athletic Director • Construction on Thomas Field Underway; Press Box and Grandstand to be Builthttps://digitalcommons.ursinus.edu/grizzlynews/1665/thumbnail.jp

    Dark Energy and Neutrino Mass Limits from Baryogenesis

    Full text link
    In this brief report we consider couplings of the dark energy scalar, such as Quintessence to the neutrinos and discuss its implications in studies on the neutrino mass limits from Baryogenesis. During the evolution of the dark energy scalar, the neutrino masses vary, consequently the bounds on the neutrino masses we have here differ from those obtained before.Comment: 5 pages,3 figures. Version accepted for publication in Phys. Rev.

    Noise suppression by noise

    Get PDF
    We have analyzed the interplay between an externally added noise and the intrinsic noise of systems that relax fast towards a stationary state, and found that increasing the intensity of the external noise can reduce the total noise of the system. We have established a general criterion for the appearance of this phenomenon and discussed two examples in detail.Comment: 4 pages, 4 figure

    Exploring Pompeii: discovering hospitality through research synergy

    Get PDF
    Hospitality research continues to broaden through an ever-increasing dialogue and alignment with a greater number of academic disciplines. This paper demonstrates how an enhanced understanding of hospitality can be achieved through synergy between archaeology, the classics and sociology. It focuses on classical Roman life, in particular Pompeii, to illustrate the potential for research synergy and collaboration, to advance the debate on hospitality research and to encourage divergence in research approaches. It demonstrates evidence of commercial hospitality activities through the excavation hotels, bars and taverns, restaurants and fast food sites. The paper also provides an example of the benefits to be gained from multidisciplinary analysis of hospitality and tourism

    Prominent Human Health Impacts from Several Marine Microbes: History, Ecology, and Public Health Implications

    Get PDF
    This paper overviews several examples of important public health impacts by marine microbes and directs readers to the extensive literature germane to these maladies. These examples include three types of dinoflagellates (Gambierdiscus spp., Karenia brevis, and Alexandrium fundyense), BMAA-producing cyanobacteria, and infectious microbes. The dinoflagellates are responsible for ciguatera fish poisoning, neurotoxic shellfish poisoning, and paralytic shellfish poisoning, respectively, that have plagued coastal populations over time. Research interest on the potential for marine cyanobacteria to contribute BMAA into human food supplies has been derived by BMAA's discovery in cycad seeds and subsequent implication as the putative cause of amyotrophic lateral sclerosis/parkinsonism dementia complex among the Chamorro people of Guam. Recent UPLC/MS analyses indicate that recent reports that BMAA is prolifically distributed among marine cyanobacteria at high concentrations may be due to analyte misidentification in the analytical protocols being applied for BMAA. Common infectious microbes (including enterovirus, norovirus, Salmonella, Campylobacter, Shigella, Staphylococcus aureus, Cryptosporidium, and Giardia) cause gastrointestinal and skin-related illness. These microbes can be introduced from external human and animal sources, or they can be indigenous to the marine environment
    corecore