81 research outputs found

    HIV-1 viral load is elevated in individuals with reverse transcriptase mutation M184V/I during virological failure of first line antiretroviral therapy and is associated with compensatory mutation L74I

    Get PDF
    Background: M184V/I cause high-level lamivudine (3TC) and emtricitabine (FTC) resistance, and increased tenofovir (TDF) susceptibility. Nonetheless, 3TC and FTC (collectively referred to as XTC) appear to retain modest activity against HIV-1 with these mutations possibly as a result of reduced replication capacity. Here we determined how M184V/I impacts virus load (VL) in patients failing therapy on a TDF/XTC plus nonnucleoside RT inhibitor (NNRTI)-containing regimen. / Methods: We compared VL in absence and presence M184V/I across studies using random effects meta-analysis. The effect of mutations on virus RT activity and infectiousness was analysed in vitro. / Results: M184I/V was present in 817 (56.5%) of 1445 individuals with VF. VL was similar in individuals with or without M184I/V (difference in log10VL 0.18, 95% CI 0.05-0.31). CD4 count was lower both at initiation of ART and at VF in participants who went on to develop M184V/I. L74I was present in 10.2% of persons with M184V/I but absent in persons without M184V/I (p<0.0001). In vitro, L74I compensated for defective replication of M184V mutated virus. / Conclusion: Virus loads were similar in persons with and without M184V/I during VF on a TDF/XTC/NNRTI-containing regimen. We therefore do not find evidence for a benefit of XTC in the context of first line failure on this combination

    Anticataleptic activity of various extracts of the aerial parts of Achyranthes aspera

    Get PDF
    Achyranthes aspera is traditionally used in the treatment of cough and bronchitis and therefore it was our objective to study the effect various extracts of the plant on clonidine and haloperidol induced catalepsy to study its antihistaminic effect. Petroleum ether extract (200 mg/kg, i.p.) of the plant significantly inhibited clonidine-induced catalepsy but not inhibited haloperidol-induced catalepsy. This proves the antihistaminic activity of the plant. The extract was standardized by HPTLC in presence of standard β-sitosterol, which proves that the antihistaminic activity may be due to β-sitosterol.Colegio de Farmacéuticos de la Provincia de Buenos Aire

    High prevalence of integrase mutation L74I in West African HIV-1 subtypes prior to integrase inhibitor treatment.

    Get PDF
    OBJECTIVES: HIV-1 integrase inhibitors are recommended as first-line therapy by WHO, though efficacy and resistance data for non-B subtypes are limited. Two recent trials have identified the integrase L74I mutation to be associated with integrase inhibitor treatment failure in HIV-1 non-B subtypes. We sought to define the prevalence of integrase resistance mutations, including L74I, in West Africa. METHODS: We studied a Nigerian cohort of recipients prior to and during receipt of second-line PI-based therapy, who were integrase inhibitor-naive. Illumina next-generation sequencing with target enrichment was used on stored plasma samples. Drug resistance was interpreted using the Stanford Resistance Database and the IAS-USA 2019 mutation lists. RESULTS: Of 115 individuals, 59.1% harboured CRF02_AG HIV-1 and 40.9% harboured subtype G HIV-1. Four participants had major IAS-USA integrase resistance-associated mutations detected at low levels (2%-5% frequency). Two had Q148K minority variants and two had R263K (one of whom also had L74I). L74I was detected in plasma samples at over 2% frequency in 40% (46/115). Twelve (26.1%) had low-level minority variants of between 2% and 20% of the viral population sampled. The remaining 34 (73.9%) had L74I present at >20% frequency. L74I was more common among those with subtype G infection (55.3%, 26/47) than those with CRF02_AG infection (29.4%, 20/68) (P = 0.005). CONCLUSIONS: HIV-1 subtypes circulating in West Africa appear to have very low prevalence of major integrase mutations, but significant prevalence of L74I. A combination of in vitro and clinical studies is warranted to understand the potential implications.K.E.B. is supported by Wellcome Trust award number 170461. N.N. is supported by NIH R01 AI147331-01. R.K.G. is supported by a Wellcome Trust Senior Fellowship in Clinical Science (WT108082AIA). This study was supported by the President’s Emergency Plan for AIDS Relief (PEPFAR) through the Centers for Disease Control and Prevention (CDC) under the terms of U2G GH002099-01 and PA GH17-1753 (ACHIEVE)

    SARS-CoV-2 evolution during treatment of chronic infection

    Get PDF
    SARS-CoV-2 Spike protein is critical for virus infection via engagement of ACE21, and is a major 54 antibody target. Here we report chronic SARS-CoV-2 with reduced sensitivity to neutralising 55 antibodies in an immune suppressed individual treated with convalescent plasma, generating 56 whole genome ultradeep sequences over 23 time points spanning 101 days. Little change was 57 observed in the overall viral population structure following two courses of remdesivir over the 58 first 57 days. However, following convalescent plasma therapy we observed large, dynamic 59 virus population shifts, with the emergence of a dominant viral strain bearing D796H in S2 and 60 H69/V70 in the S1 N-terminal domain NTD of the Spike protein. As passively transferred 61 serum antibodies diminished, viruses with the escape genotype diminished in frequency, before 62 returning during a final, unsuccessful course of convalescent plasma. In vitro, the Spike escape 63 double mutant bearing H69/V70 and D796H conferred modestly decreased sensitivity to 64 convalescent plasma, whilst maintaining infectivity similar to wild type. D796H appeared to be 65 the main contributor to decreased susceptibility but incurred an infectivity defect. The 66 H69/V70 single mutant had two-fold higher infectivity compared to wild type, possibly 67 compensating for the reduced infectivity of D796H. These data reveal strong selection on SARS68 CoV-2 during convalescent plasma therapy associated with emergence of viral variants with 69 evidence of reduced susceptibility to neutralising antibodies.COG-UK is supported by funding from the Medical Research Council (MRC) part of UK Research & Innovation (UKRI), the National Institute of Health Research (NIHR) and Genome Research Limited, operating as the Wellcome Sanger Institute

    SARS-CoV-2 spike N-terminal domain modulates TMPRSS2-dependent viral entry and fusogenicity

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike N-terminal domain (NTD) remains poorly characterized despite enrichment of mutations in this region across variants of concern (VOCs). Here, we examine the contribution of the NTD to infection and cell-cell fusion by constructing chimeric spikes bearing B.1.617 lineage (Delta and Kappa variants) NTDs and generating spike pseudotyped lentivirus. We find that the Delta NTD on a Kappa or wild-type (WT) background increases S1/S2 cleavage efficiency and virus entry, specifically in lung cells and airway organoids, through use of TMPRSS2. Delta exhibits increased cell-cell fusogenicity that could be conferred to WT and Kappa spikes by Delta NTD transfer. However, chimeras of Omicron BA.1 and BA.2 spikes with a Delta NTD do not show more efficient TMPRSS2 use or fusogenicity. We conclude that the NTD allosterically modulates S1/S2 cleavage and spike-mediated functions in a spike context-dependent manner, and allosteric interactions may be lost when combining regions from more distantly related VOCs

    Recurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the Alpha variant B.1.1.7

    Get PDF
    We report severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike ΔH69/V70 in multiple independent lineages, often occurring after acquisition of receptor binding motif replacements such as N439K and Y453F, known to increase binding affinity to the ACE2 receptor and confer antibody escape. In vitro, we show that, although ΔH69/V70 itself is not an antibody evasion mechanism, it increases infectivity associated with enhanced incorporation of cleaved spike into virions. ΔH69/V70 is able to partially rescue infectivity of spike proteins that have acquired N439K and Y453F escape mutations by increased spike incorporation. In addition, replacement of the H69 and V70 residues in the Alpha variant B.1.1.7 spike (where ΔH69/V70 occurs naturally) impairs spike incorporation and entry efficiency of the B.1.1.7 spike pseudotyped virus. Alpha variant B.1.1.7 spike mediates faster kinetics of cell-cell fusion than wild-type Wuhan-1 D614G, dependent on ΔH69/V70. Therefore, as ΔH69/V70 compensates for immune escape mutations that impair infectivity, continued surveillance for deletions with functional effects is warranted

    Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2

    Get PDF
    Although two-dose mRNA vaccination provides excellent protection against SARS-CoV-2, there is little information about vaccine efficacy against variants of concern (VOC) in individuals above eighty years of age1. Here we analysed immune responses following vaccination with the BNT162b2 mRNA vaccine2 in elderly participants and younger healthcare workers. Serum neutralization and levels of binding IgG or IgA after the first vaccine dose were lower in older individuals, with a marked drop in participants over eighty&nbsp;years old. Sera from participants above eighty showed lower neutralization potency against the B.1.1.7 (Alpha), B.1.351 (Beta) and P.1. (Gamma) VOC than against the wild-type virus and were more likely to lack any neutralization against VOC following the first dose. However, following the second dose, neutralization against VOC was detectable regardless of age. The frequency of SARS-CoV-2 spike-specific memory B cells was higher in elderly responders (whose serum showed neutralization activity) than in non-responders after the first dose. Elderly participants showed a clear reduction in somatic hypermutation of class-switched cells. The production of interferon-γ and interleukin-2 by SARS-CoV-2 spike-specific T cells was lower in older participants, and both cytokines were secreted primarily by CD4 T cells. We conclude that the elderly are a high-risk population and that specific measures to boost vaccine responses in this population are warranted, particularly where variants of concern are circulating

    SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion

    Get PDF
    The B.1.617.2 (Delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha)1. In vitro, B.1.617.2 is sixfold less sensitive to serum neutralizing antibodies from recovered individuals, and eightfold less sensitive to vaccine-elicited antibodies, compared with wild-type Wuhan-1 bearing D614G. Serum neutralizing titres against B.1.617.2 were lower in ChAdOx1 vaccinees than in BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies to the receptor-binding domain and the amino-terminal domain. B.1.617.2 demonstrated higher replication efficiency than B.1.1.7 in both airway organoid and human airway epithelial systems, associated with B.1.617.2 spike being in a predominantly cleaved state compared with B.1.1.7 spike. The B.1.617.2 spike protein was able to mediate highly efficient syncytium formation that was less sensitive to inhibition by neutralizing antibody, compared with that of wild-type spike. We also observed that B.1.617.2 had higher replication and spike-mediated entry than B.1.617.1, potentially explaining the B.1.617.2 dominance. In an analysis of more than 130 SARS-CoV-2-infected health care workers across three centres in India during a period of mixed lineage circulation, we observed reduced ChAdOx1 vaccine effectiveness against B.1.617.2 relative to non-B.1.617.2, with the caveat of possible residual confounding. Compromised vaccine efficacy against the highly fit and immune-evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era

    SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion

    Get PDF
    The B.1.617.2 (Delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha)1. In vitro, B.1.617.2 is sixfold less sensitive to serum neutralizing antibodies from recovered individuals, and eightfold less sensitive to vaccine-elicited antibodies, compared with wild-type Wuhan-1 bearing D614G. Serum neutralizing titres against B.1.617.2 were lower in ChAdOx1 vaccinees than in BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies to the receptor-binding domain and the amino-terminal domain. B.1.617.2 demonstrated higher replication efficiency than B.1.1.7 in both airway organoid and human airway epithelial systems, associated with B.1.617.2 spike being in a predominantly cleaved state compared with B.1.1.7 spike. The B.1.617.2 spike protein was able to mediate highly efficient syncytium formation that was less sensitive to inhibition by neutralizing antibody, compared with that of wild-type spike. We also observed that B.1.617.2 had higher replication and spike-mediated entry than B.1.617.1, potentially explaining the B.1.617.2 dominance. In an analysis of more than 130 SARS-CoV-2-infected health care workers across three centres in India during a period of mixed lineage circulation, we observed reduced ChAdOx1 vaccine effectiveness against B.1.617.2 relative to non-B.1.617.2, with the caveat of possible residual confounding. Compromised vaccine efficacy against the highly fit and immune-evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era
    • …
    corecore