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Summary: We report that SARS-CoV-2 spike mutations L452R and E484Q (as observed in B.1.617.1) 

each confer modestly reduced sensitivity to BNT162b2 mRNA vaccine-elicited antibodies, and the 

combined mutations have a similar impact as either alone, suggesting lack of synergistic loss of 

sensitivity. 
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Abstract 

The SARS-CoV-2 B.1.617 variant emerged in the Indian state of Maharashtra in late 2020. There have 

been fears that two key mutations seen in the receptor binding domain L452R and E484Q would 

have additive effects on evasion of neutralising antibodies. We report that spike bearing L452R and 

E484Q confers modestly reduced sensitivity to BNT162b2 mRNA vaccine-elicited antibodies 

following either first or second dose. The effect is similar in magnitude to the loss of sensitivity 

conferred by L452R or E484Q alone. These data demonstrate reduced sensitivity to vaccine elicited 

neutralising antibodies by L452R and E484Q but lack of synergistic loss of sensitivity. 
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Background 

Global control of the SARS-CoV-2 pandemic has yet to be realised despite availability of highly 

effective vaccines. Emergence of new variants with multiple mutations is likely the result of chronic 

infections within individuals who are immune compromised1. These new variants with antibody 

escape mutations has coincided with vaccine scale up, potentially threatening their success in 

controlling the pandemic2, 3.   

 

India experienced a wave of infections in mid 2020 that was controlled by a nationwide lockdown. 

Since easing of restrictions, India has seen expansion in cases of COVID-19 since March 2021. The 

B.1.617 variant emerged in the state of Maharashtra in late 2020/early 2021 and has spread 

throughout India and to at least 60 countries. It was labelled initially as a ‘double mutant‘ since two 

of the mutations L452R and E484Q were matched to an in-house screening database for mutations 

leading to probable evasion of antibodies and/or being linked to increased transmissibility. 

 

L452R and E484Q are located in the critical receptor binding domain that interacts with ACE24. 

L452R was observed in the ‘Epsilon Variant’ B.1.429 and is associated with increase in viral load and 

around 20% increased transmissibility 5. It was also associated with increased ACE2 binding, 

increased infectivity6 and 3-6 fold loss of neutralisation sensitivity to vaccine elicited sera in 

experiments with pseudotyped virus (PV) particles6, 7. Little is known about E484Q, though E484K is a 

defining feature of two VOCs, B.1.351 and P.1, and is found alongside K417N/T as well as N501Y in 

these VOC. E484K has also emerged in the background of B.1.1.78. 
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Methods 

Phylogenetic Analysis 

All sequences excluding low-quality sequences (>5% N regions) with the L452R mutation were 

downloaded from https://gisaid.org on the 4th May 2021 and manually aligned to reference strain 

MN908947.3 with mafft v4.475 using the --keeplength --addfragments option. Sequences were de-

duplicated using bbtools dedupe.sh. A random subset of 400 global sequences (excluding USA), and 

100 USA sequences were then selected with seqtk and concatenated. Sequence lineages were 

assigned to all sequences with pangolin v2.4 (https://github.com/cov-lineages/pangolin) and 

pangolearn (04/05/2021).  

 

Phylogenies were then inferred using maximum-likelihood in IQTREE v2.1.3 9 using a GTR+R6 model 

and the -fast option. Mutations of interest were determined using a local instance of nextclade-cli 

v0.14.2 (https://github.com/nextstrain/nextclade). The inferred phylogeny was annotated in R v4.04 

using ggtree v2.2.4 and rooted on the SARS-CoV-2 reference sequence, and nodes arranged in 

descending order. Major lineages were annotated on the phylogeny, as well as a heatmap indicating 

which mutations of interest were carried by each viral sequence. 

 

Structural Analyses 

The PyMOL Molecular Graphics System v.2.4.0 (https://github.com/schrodinger/pymol-open-

source/releases) was used to map the location of the two RDB mutants L452R and E484Q onto two 

previously published SARS-CoV-2 spike glycoprotein structures. The two structures included a 

closed-conformation spike protein - PDB: 6ZGE and a spike protein in open conformation, bound to 

nAb H4 10.    
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Serum samples and ethical approval 

Ethical approval for use of serum samples. Controls with COVID-19 were enrolled to the NIHR 

BioResource Centre Cambridge under ethics review board (17/EE/0025). Protocols involving human 

subjects recruited at Kyoto University, Japan, were reviewed and approved by (approval numbers 

G0697 and G1309). All human subjects provided written informed consent. 

 

Cells 

HEK 293T CRL-3216, Vero CCL-81 were purchased from ATCC and maintained in Dulbecco’s Modified 

Eagle Medium (DMEM) supplemented with 10% fetal calf serum (FCS), 100 U/ml penicillin, and 

100mg/ml streptomycin. All cells were regularly tested and are mycoplasma free.  

 

Pseudotype virus preparation 

Plasmids encoding the spike protein of SARS-CoV-2 with a C terminal 19 amino acid deletion with 

D614G, were used. Mutations were introduced using Quickchange Lightning Site-Directed 

Mutagenesis kit (Agilent) following the manufacturer’s instructions. Viral vectors were prepared by 

transfection of 293T cells by using Fugene HD transfection reagent (Promega). 293T cells were 

transfected with a mixture of 11ul of Fugene HD, 1µg of pCDNAΔ19 spike-HA, 1ug of p8.91 HIV-1 

gag-pol expression vector and 1.5µg of pCSFLW (expressing the firefly luciferase reporter gene with 

the HIV-1 packaging signal). Viral supernatant was collected at 48 and 72h after transfection, filtered 

through 0.45um filter and stored at -80˚C. Infectivity was measured by luciferase detection in target 

293T cells transfected with TMPRSS2 and ACE2. 
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Standardisation of virus input by SYBR Green-based product-enhanced PCR assay (SG-PERT) 

The reverse transcriptase activity of virus preparations was determined by qPCR using a SYBR Green-

based product-enhanced PCR assay (SG-PERT) as previously described11. Briefly, 10-fold dilutions of 

virus supernatant were lysed in a 1:1 ratio in a 2x lysis solution (made up of 40% glycerol v/v 0.25% 

Trition X-100 v/v 100mM KCl, RNase inhibitor 0.8 U/ml, TrisHCL 100mM, buffered to pH7.4) for 10 

minutes at room temperature. 

 

Serum pseudotype neutralisation assay for Pfizer BNT162b2 dose 1 experiments 

Virus neutralisation assays were performed on 293T cell transiently transfected with ACE2 and 

TMPRSS2 using SARS-CoV-2 spike pseudotyped virus expressing luciferase12. Pseudotyped virus was 

incubated with serial dilution of heat inactivated human serum samples or convalescent plasma in 

duplicate for 1h at 37˚C. Virus and cell only controls were also included. Then, freshly trypsinized 

293T ACE2/TMPRSS2 expressing cells were added to each well. Following 48h incubation in a 5% 

CO2 environment at 37°C, the luminescence was measured using Steady-Glo Luciferase assay system 

(Promega). IC50 was calculated in GraphPad Prism v8.0. 

 

Establishment of stable cells for Pfizer dose 2 experiments 

The ACE2-expressing lentiviral plasmid pWPI-ACE2-zeo was generated by replacing the original EGFP 

gene of the lentiviral transfer plasmid pWPI (Pham et al., 2004), with the zeocin-resistant gene, and 

by inserting the ACE2 gene into the region immediately upstream of the internal ribosome entry site. 

Similarly, the TMPRSS2-expressing lentiviral plasmid pWPI-TMPRSS2-neo was created by inserting 

the neomycin-resistant gene and the TMPRSS2 gene into pWPI. 
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293T cells (4.4 x 105) were cotransfected with 0.1 μg of pC-VSVg, 0.95 μg of psPAX2-IN/HiBiT (Ozono 

et al., 2021), and 0.95 μg of either pWPI-ACE2-zeo or pWPI-TMPRSS2-neo, using FuGENE 6 

(Promega). Sixteen hours later, the cells were washed with phosphate-buffered saline, and 1 ml of 

fresh complete medium was added. After 24 h, the supernatants were harvested and treated with 

DNase I (Roche) at 37 °C for 30min. The lentivirus levels in viral supernatants were measured by the 

HiBiT assay, as previously described (Ozono et al., 2020). HOS cells (1 x 105) were then transduced 

with the ACE2-expressing lentiviral vector and the TMPRSS2-expressing lentiviral vector at a 

multiplicity of infection of 2. After 48 h, transduced cells were maintained for zeocin (50 μg ml−1; 

Thermo Ficher) and G418 (400 μg ml−1; Nacalai) selections for 14 d.  

 

 

Results 

We subsampled SARS-CoV-2 sequences containing L452R from GISAID, and inferred a maximum 

likelihood phylogenetic tree (Figure 1A). We annotated the sequences based on the accompanying 

mutations and observed three lineages within B.1.617.  B.1.617.1 has three key spike mutations 

L452R, E484Q and P681R, whereas B.1.617.2 is characterised by L452R, T478K and P681R (cleavage 

site region). There was likely loss of E484Q in B.1.617.2 given that B.1.617.3 also bears E484Q (Figure 

1A), indicating E484Q was present in the ancestral virus. There are multiple other mutations in the 

NTD and S2 regions of B.1.617 lineages. The number of sequenced isolates of B.1.617.1 and 

B.1.617.2 has been steadily increasing in India (Figure 1B), though with the caveat of very low 

sequencing of prevalent cases and heterogeneous sampling across the country.  

 

Spike mutations L452R and E484Q are in the receptor binding domain that not only binds ACE213, 

but is a target for neutralising antibodies14, 15 (Figure 2A). We tested the neutralisation sensitivity of 
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combinations of mutations found in B.1.617.1: L452R, E484Q and P681R, using a previously reported 

pseudotyped virus (PV) system. We tested 24 stored sera from first dose (Figure 2B) and 16 sera 

from second dose (Figure 2C) Pfizer BNT162b2 vaccinees against a range of spike mutation bearing 

PV (Figure 2B,C, Supplementary Figure 1B,C). E484Q had a similar impact on reducing neutralisation 

sensitivity as L452R and E484K (3.6-4.5 fold). When E484Q and L452R were combined, there was a 

statistically significant loss of sensitivity as compared to wild type, but the fold change of 5.1 was 

similar to that observed with each mutation individually with absence of evidence for an additive 

effect (Figure 2B, Supplementary Figure 1B). However, as expected, in some sera there was evidence 

for variable neutralising activity against the L452R and E484Q PVs, reflecting differential antibody 

responses between individuals. When we tested second dose sera (Figure 2C, Supplementary Figure 

1C), similar patterns were observed between different viruses although fold changes were lower 

overall, likely due to increased neutralisation breadth and potency following booster vaccination8. 

 

Finally, with the PV system we measured spike mediated entry into target HOS cells endogenously 

expressing ACE2 and TMPRSS2 receptors. The E484K and L452R mutant did not have significantly 

higher entry efficiency compared to single mutants (Figure 2D). We also tested the entry efficiency 

of L452R, E484Q and P681R in a range of target cell lines, either exogenously or endogenously 

expressing SARS-CoV-2 receptors ACE2/TMPRSS2. The spike triple mutant exhibited similar or mildly 

reduced entry compared to Wuhan-1 D614G spike (Supplementary Figure 2).  

 

 

Discussion 

Here we demonstrate three lineages of B.1.617, all bearing the L452R mutation. We report key 

differences in amino acids between sub-lineages and focus on B.1.617.1 bearing two key RBD 

D
ow

nloaded from
 https://academ

ic.oup.com
/jid/advance-article/doi/10.1093/infdis/jiab368/6321359 by U

niversity of C
am

bridge user on 28 July 2021



Acc
ep

ted
 M

an
us

cri
pt

 

 11 

mutations L452R, E484Q. In vitro, we find modestly reduced sensitivity of the spike protein bearing 

RBD mutations L452R and E484Q to BNT162b2 mRNA vaccine-elicited antibodies that is similar in 

magnitude to the loss of sensitivity conferred by L452R or E484Q alone. P681R did not appear to 

alter the sensitivity to vaccine sera or to alter the entry efficiency conferred by spike protein on 

lentiviral particles. These data demonstrate reduced sensitivity to vaccine elicited neutralising 

antibodies by the RBD bearing L452R and E484Q but lack of synergistic loss of sensitivity. 
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Figure Legends 

Figure 1. SARS-CoV-2 B.1.617 variant emerging in India A. Maximum-likelihood phylogeny of 

lineages bearing L452R in spike. All sequences with the L452R mutation were downloaded from 

https://gisaid.org and manually aligned to reference strain MN908947.3 with mafft. Sequences were 

de-duplicated and a random subset of 400 global sequences, and 100 USA sequences were then 

selected with seqtk. All sequence lineages were assigned using pangolin v2.4. Major lineages are 

indicated as straight lines adjacent to the heatmap, alongside mutations of current interest. The 

phylogeny was inferred with IQTREE2 v2.1.3. B. The number of B.1617 cases per month in India in 

the first half of 2021.  

 

Figure 2. Entry efficiency and neutralisation sensitivity of B.1.617 mutant pseudotyped viruses 

following mRNA vaccination A. Surface representation of the spike protein in open formation with 

neutralising antibody H4 (pink spheres, PDB: 7L58, Rapp et al, 2021) bound to one monomer of the 

spike protein. Residues L452 and E484 are indicated with red and green sphere, respectively. Ribbon 

representation of the interaction between the neutralising antibody H4 and the RBD of a spike 

monomer. Neutralisation by B. first dose and C. second dose mRNA vaccine-elicited sera against 

wild type and mutant SARS-CoV-2 spike pseudotyped viruses. Reciprocal geometric mean titre 

(GMT) shown with 95% CI. *p<0.05, ** p<0.01, ***p<0.001, ****p<0.0001. D. Virus infectivity of 

pseudotyped virus (PV) bearing indicated spike mutations. PV were generated in 293T cells and used 

to infect HOS cells transduced with ACE2 and TMPRSS2. Input virus was normalized for protein 

expression. Data are technical triplicates and mean with SE is plotted. Data are representative of two 

independent experiments. 
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Supplementary Figure 1: Neutralisation sensitivity of B.1.617 mutant pseudotyped viruses 

following mRNA vaccination A. Representative neutralisation curves from mRNA first dose vaccine 

sera tested against PV bearing spike mutations observed in B.1.617.1 RBD. Error bars represent 

standard error of mean of technical replicates. Data are representative of two independent 

experiments. Neutralisation by B. first dose and C. second dose mRNA vaccine-elicited sera against 

wild type and mutant SARS-CoV-2 spike pseudotyped viruses. Reciprocal geometric Mean Titre 

(GMT) shown *p<0.05, ** p<0.01, ***p<0.001, ****p<0.0001. D. Reciprocal geometric mean titre 

(GMT) for first and second dose sera against SARS-CoV-2 spike PV with standard error of the mean. 

 

Supplementary Figure 2: Entry efficiency of B.1.617 mutant pseudotyped viruses. Virus infectivity 

of pseudotyped virus (PV) bearing indicated spike mutations. PV were generated in 293T cells, 

filtered and then used to infect a range of target cells. Luciferase was measured 48 hours after 

infection. Input virus inoculum was corrected for genome copy input using SG-PERT. Mean is plotted 

with error bars representing SEM.  Data are representative of two experiments. 

 

 

 

 

 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/jid/advance-article/doi/10.1093/infdis/jiab368/6321359 by U

niversity of C
am

bridge user on 28 July 2021



Acc
ep

ted
 M

an
us

cri
pt

 

 16 

Figure 1 
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Figure 2 
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