617 research outputs found

    A national registry for juvenile dermatomyositis and other paediatric idiopathic inflammatory myopathies: 10 years' experience; the Juvenile Dermatomyositis National (UK and Ireland) Cohort Biomarker Study and Repository for Idiopathic Inflammatory Myopathies

    Get PDF
    Objectives: The paediatric idiopathic inflammatory myopathies (IIMs) are a group of rare chronic inflammatory disorders of childhood, affecting muscle, skin and other organs. There is a severe lack of evidence base for current treatment protocols in juvenile myositis. The rarity of these conditions means that multicentre collaboration is vital to facilitate studies of pathogenesis, treatment and disease outcomes. We have established a national registry and repository for childhood IIM, which aims to improve knowledge, facilitate research and clinical trials, and ultimately to improve outcomes for these patients. Methods: A UK-wide network of centres and research group was established to contribute to the study. Standardized patient assessment, data collection forms and sample protocols were agreed. The Biobank includes collection of peripheral blood mononuclear cells, serum, genomic DNA and biopsy material. An independent steering committee was established to oversee the use of data/samples. Centre training was provided for patient assessment, data collection and entry. Results: Ten years after inception, the study has recruited 285 children, of which 258 have JDM or juvenile PM; 86% of the cases have contributed the biological samples. Serial sampling linked directly to the clinical database makes this a highly valuable resource. The study has been a platform for 20 sub-studies and attracted considerable funding support. Assessment of children with myositis in contributing centres has changed through participation in this study. Conclusions: This establishment of a multicentre registry and Biobank has facilitated research and contributed to progress in the management of a complex group of rare muscloskeletal conditions

    Phenotype standardization for statin-induced myotoxicity

    Get PDF
    Statins are widely used lipid-lowering drugs that are effective in reducing cardiovascular disease risk. Although they are generally well tolerated, they can cause muscle toxicity, which can lead to severe rhabdomyolysis. Research in this area has been hampered to some extent by the lack of standardized nomenclature and phenotypic definitions. We have used numerical and descriptive classifications and developed an algorithm to define statin-related myotoxicity phenotypes, including myalgia, myopathy, rhabdomyolysis, and necrotizing autoimmune myopathy.</p

    Detection of anti-drug antibodies using a bridging ELISA compared with radioimmunoassay in adalimumab-treated rheumatoid arthritis patients with random drug levels

    Get PDF
    Objective: To determine the concordance between RIA and bridging ELISA at detecting anti-drug antibodies (ADAbs) in the context of random adalimumab levels and investigate the additional clinical utility of detecting ADAbs in RA patients who test ADAb positive by RIA and negative by ELISA. Methods: ADAb levels were determined using RIA and bridging ELISA in 63 adalimumab treated RA patients (159 samples). Immunogenicity concordance was determined using receiver-operating characteristic (ROC) curves. To determine the additional clinical value provided by a positive RIA in the presence of negative ELISA, association between treatment response (ΔDAS28), adalimumab drug levels and ADAbs was evaluated longitudinally using generalised estimating equation. Results: Of the 60 RIA+ samples (n=31 patients), 19 (n=10 patients) were also ELISA+, corresponding to 31.7% of samples. Area under the curve (AUC) for detecting ADAbs using ELISA (compared with RIA) using ROC curves was 0.65 (95% CI: 0.59-0.71); this increased to 0.91 (95% CI: 0.81-0.99) if ADAbs were ≥100 AU/ml using RIA. In RIA+/ELISA- patients, adalimumab levels were associated with ΔDAS28 over 12 months [regression coefficient: 0.098 (0.043-0.15), p<0.0001] and whilst ADAbs were significantly associated with drug level, they were not directly associated with ΔDAS28 over 12 months [β coefficient: 0.00083 (-0.0038 to 0.0054), p=0.72]. Conclusion: ADAbs were detected using ELISA more frequently when present in high titres as measured by RIA. In RIA+/ELISA- patients, only drug levels were significantly associated with treatment response. Although ADAbs were not independently associated with treatment response, they may be helpful in determining the aetiology of low drug levels

    Fast and Efficient Postsynthetic DNA Labeling in Cells by Means of Strain-Promoted Sydnone-Alkyne Cycloadditions

    Get PDF
    Fast and efficient: DNA strands, modified with the novel bioorthogonal reporters sydnones, undergo fast and efficient labeling with cyclooctynes and have the potential to become essential tools for imaging DNA and possibly RNA in cells. Sydnones are highly stable mesoionic 1,3-dipoles that react with cyclooctynes through strain-promoted sydnone-alkyne cycloaddition (SPSAC). Although sydnones have been shown to be valuable bioorthogonal chemical reporters for the labeling of proteins and complex glycans, nucleic acids have not yet been tagged by SPSAC. Evaluation of SPSAC kinetics with model substrates showed fast reactions with cyclooctyne probes (up to k=0.59 M−1^{-1} s−1^{-1}), and two different sydnones were effectively incorporated into both 2’-deoxyuridines at position 5, and 7-deaza-2’-deoxyadenosines at position 7. These modified nucleosides were synthetically incorporated into single-stranded DNAs, which were successfully postsynthetically labeled with cyclooctyne probes both in vitro and in cells. These results show that sydnones are versatile bioorthogonal tags and have the premise to become essential tools for tracking DNA and potentially RNA in living cells

    Genetic background may contribute to the latitude-dependent prevalence of dermatomyositis and anti-TIF1-γ autoantibodies in adult patients with myositis

    Get PDF
    Background: The prevalence of dermatomyositis (DM) versus DM and polymyositis (PM) combined has been shown to be negatively associated with latitude. This observation has been attributed to increasing exposure to ultraviolet (UV) light towards the equator. In this study, we investigated whether differing genetic background in populations could contribute to this distribution of DM. Methods: Case data derived from the MYOGEN (Myositis Genetics Consortium) Immunochip study (n = 1769) were used to model the association of DM prevalence and DM-specific autoantibodies with latitude. Control data (n = 9911) were used to model the relationship of human leucocyte antigen (HLA) associated with DM autoantibodies and DM or PM single-nucleotide polymorphisms (suggestive significance in the Immunochip project, P < 2.25 x 10(-5)) in healthy control subjects with latitude. All variables were analysed against latitude using ordered logistic regression, adjusted for sex. Results: The prevalence of DM, as a proportion of DM and PM combined, and the presence of anti-transcription intermediary factor 1 (anti-TIF1-gamma) autoantibodies were both significantly negatively associated with latitude (OR 0.96, 95% CI 0.95-0.98, P < 0.001; and OR 0.95, 95% CI 0.92-0.99, P = 0.004, respectively). HLA alleles significantly associated with anti-Mi-2 and anti-TIF1-gamma autoantibodies also were strongly negatively associated with latitude (OR 0.97, 95% CI 0.96-0.98, P < 0.001 and OR 0.98, 95% CI 0.97-0.99, P < 0.001, respectively). The frequency of five PM- or DM-associated SNPs showed a significant association with latitude (P < 0.05), and the direction of four of these associations was consistent with the latitude associations of the clinical phenotypes. Conclusions: These results lend some support to the hypothesis that genetic background, in addition to UV exposure, may contribute to the distribution of DM

    Focused HLA analysis in Caucasians with myositis identifies significant associations with autoantibody subgroups.

    Get PDF
    OBJECTIVES: Idiopathic inflammatory myopathies (IIM) are a spectrum of rare autoimmune diseases characterised clinically by muscle weakness and heterogeneous systemic organ involvement. The strongest genetic risk is within the major histocompatibility complex (MHC). Since autoantibody presence defines specific clinical subgroups of IIM, we aimed to correlate serotype and genotype, to identify novel risk variants in the MHC region that co-occur with IIM autoantibodies. METHODS: We collected available autoantibody data in our cohort of 2582 Caucasian patients with IIM. High resolution human leucocyte antigen (HLA) alleles and corresponding amino acid sequences were imputed using SNP2HLA from existing genotyping data and tested for association with 12 autoantibody subgroups. RESULTS: We report associations with eight autoantibodies reaching our study-wide significance level of p\u3c2.9×10 CONCLUSIONS: These findings provide new insights regarding the functional consequences of genetic polymorphisms within the MHC. As autoantibodies in IIM correlate with specific clinical features of disease, understanding genetic risk underlying development of autoantibody profiles has implications for future research

    Analysis of human total antibody repertoires in TIF1γ autoantibody positive dermatomyositis

    Get PDF
    We investigate the accumulated microbial and autoantigen antibody repertoire in adult-onset dermatomyositis patients sero-positive for TIF1γ (TRIM33) autoantibodies. We use an untargeted high-throughput approach which combines immunoglobulin disease-specific epitope-enrichment and identification of microbial and human antigens. We observe antibodies recognizing a wider repertoire of microbial antigens in dermatomyositis. Antibodies recognizing viruses and Poxviridae family species are significantly enriched. The identified autoantibodies recognise a large portion of the human proteome, including interferon regulated proteins; these proteins cluster in specific biological processes. In addition to TRIM33, we identify autoantibodies against eleven further TRIM proteins, including TRIM21. Some of these TRIM proteins share epitope homology with specific viral species including poxviruses. Our data suggest antibody accumulation in dermatomyositis against an expanded diversity of microbial and human proteins and evidence of non-random targeting of specific signalling pathways. Our findings indicate that molecular mimicry and epitope spreading events may play a role in dermatomyositis pathogenesis

    In adult onset myositis, the presence of interstitial lung disease and myositis specific/associated antibodies are governed by HLA class II haplotype, rather than by myositis subtype

    Get PDF
    The aim of this study was to investigate HLA class II associations in polymyositis (PM) and dermatomyositis (DM), and to determine how these associations influence clinical and serological differences. DNA samples were obtained from 225 UK Caucasian idiopathic inflammatory myopathy patients (PM = 117, DM = 108) and compared with 537 randomly selected UK Caucasian controls. All cases had also been assessed for the presence of related malignancy and interstitial lung disease (ILD), and a number of myositis-specific/myositis-associated antibodies (MSAs/MAAs). Subjects were genotyped for HLA-DRB1, DQA1 and DQB1. HLA-DRB1*03, DQA1*05 and DQB1*02 were associated with an increased risk for both PM and DM. The HLA-DRB1*03-DQA1*05-DQB1*02 haplotype demonstrated strong association with ILD, irrespective of myositis subtype or presence of anti-aminoacyl-transfer RNA synthetase antibodies. The HLA-DRB1*07-DQA1*02-DQB1*02 haplotype was associated with risk for anti-Mi-2 antibodies, and discriminated PM from DM (odds ratio 0.3, 95% confidence interval 0.1–0.6), even in anti-Mi-2 negative patients. Other MSA/MAAs showed specific associations with other HLA class II haplotypes, irrespective of myositis subtype. There were no genotype, haplotype or serological associations with malignancy. The HLA-DRB1*03-DQA1*05-DQB1*02 haplotype associations appear to not only govern disease susceptibility in Caucasian PM/DM patients, but also phenotypic features common to PM/DM. Though strongly associated with anti-Mi-2 antibodies, the HLA-DRB1*07-DQA1*02-DQB1*02 haplotype shows differential associations with PM/DM disease susceptibility. In conclusion, these findings support the notion that myositis patients with differing myositis serology have different immunogenetic profiles, and that these profiles may define specific myositis subtypes

    MicroRNA and mRNA profiling in the idiopathic inflammatory myopathies

    Get PDF
    Background: The idiopathic inflammatory myopathies (IIMs) are heterogeneous autoimmune conditions of skeletal muscle inflammation and weakness. MicroRNAs (miRNAs) are short, non-coding RNA which regulate gene expression of target mRNAs. The aim of this study was to profile miRNA and mRNA in IIM and identify miRNA-mRNA relationships which may be relevant to disease. Methods: mRNA and miRNA in whole blood samples from 7 polymyositis (PM), 7 dermatomyositis (DM), 5 inclusion body myositis and 5 non-myositis controls was profiled using next generation RNA sequencing. Gene ontology and pathway analyses were performed using GOseq and Ingenuity Pathway Analysis. Dysregulation of miRNAs and opposite dysregulation of predicted target mRNAs in IIM subgroups was validated using RTqPCR and investigated by transfecting human skeletal muscle cells with miRNA mimic. Results: Analysis of differentially expressed genes showed that interferon signalling, and anti-viral response pathways were upregulated in PM and DM compared to controls. An anti-Jo1 autoantibody positive subset of PM and DM (n = 5) had more significant upregulation and predicted activation of interferon signalling and highlighted T-helper (Th1 and Th2) cell pathways. In miRNA profiling miR-96-5p was significantly upregulated in PM, DM and the anti-Jo1 positive subset. RTqPCR replicated miR-96-5p upregulation and predicted mRNA target (ADK, CD28 and SLC4A10) downregulation. Transfection of a human skeletal muscle cell line with miR-96-5p mimic resulted in significant downregulation of ADK. Conclusion: MiRNA and mRNA profiling identified dysregulation of interferon signalling, anti-viral response and T-helper cell pathways, and indicates a possible role for miR-96-5p regulation of ADK in pathogenesis of IIM
    • …
    corecore