211 research outputs found

    A Products Liability Response to Gun Control Litigation

    Get PDF

    Tissue compartmentalization enables; Salmonella; persistence during chemotherapy

    Get PDF
    Antimicrobial chemotherapy can fail to eradicate the pathogen, even in the absence of antimicrobial resistance. Persisting pathogens can subsequently cause relapsing diseases. In vitro studies suggest various mechanisms of antibiotic persistence, but their in vivo relevance remains unclear because of the difficulty of studying scarce pathogen survivors in complex host tissues. Here, we localized and characterized rare surviving; Salmonella; in mouse spleen using high-resolution whole-organ tomography. Chemotherapy cleared >99.5% of the; Salmonella; but was inefficient against a small; Salmonella; subset in the white pulp. Previous models could not explain these findings: drug exposure was adequate,; Salmonella; continued to replicate, and host stresses induced only limited; Salmonella; drug tolerance. Instead, antimicrobial clearance required support of; Salmonella; -killing neutrophils and monocytes, and the density of such cells was lower in the white pulp than in other spleen compartments containing higher; Salmonella; loads. Neutrophil densities declined further during treatment in response to receding; Salmonella; loads, resulting in insufficient support for; Salmonella; clearance from the white pulp and eradication failure. However, adjunctive therapies sustaining inflammatory support enabled effective clearance. These results identify uneven; Salmonella; tissue colonization and spatiotemporal inflammation dynamics as main causes of; Salmonella; persistence and establish a powerful approach to investigate scarce but impactful pathogen subsets in complex host environments

    Plant-Derived Catechols Are Substrates of TonB-Dependent Transporters and Sensitize Pseudomonas aeruginosa to Siderophore-Drug Conjugates

    Get PDF
    Pseudomonas aeruginosa is an opportunistic pathogen responsible for acute and chronic infections in immunocompromised hosts. This organism is known to compete efficiently against coinfecting microorganisms, due in part to the secretion of antimicrobial molecules and the synthesis of siderophore molecules with high affinity for iron. P. aeruginosa possess a large repertoire of TonB-dependent transporters for the uptake of its own, as well as xenosiderophores released from other bacteria or fungi. Here, we show that P. aeruginosa is also capable of utilizing plant-derived polyphenols as an iron source. We found that exclusively plant-derived phenols containing a catechol group (i.e., chlorogenic acid, caffeic acid, quercetin, luteolin) induce the expression of the TonB-dependent transporters PiuA or PirA. This induction requires the two-component system PirR-PirS. Chlorogenic acid in its Fe(III)-loaded form was actively transported by PiuA and PirA and supported growth under iron-limiting conditions. Coincidentally, PiuA and PirA are also the main TonB transporters for the recently approved siderophore-drug conjugate cefiderocol. Surprisingly, quercetin supplementation increased the susceptibility of P. aeruginosa to siderophore-drug conjugates, due to induction of; piuA; and; pirA; expression mediated by the PirR-PirS two-component system. These findings suggest a potential novel therapeutic application for these biologically active dietary polyphenols.; IMPORTANCE; Iron is an essential element for living organisms. Most bacteria synthesize species-specific iron chelators, called siderophores, able to capture iron from their host or the environment. Pseudomonas aeruginosa, an opportunistic pathogen, produces two endogenous siderophores but is able to acquire iron also via xenosiderophores, produced by other bacteria or fungi, using a set of conserved TonB transporters. Here, we show that P. aeruginosa is also able to use plant metabolites, like quercetin and chlorogenic acid, as siderophores. These metabolites possess an iron-chelating catechol group and are recognized and transported by the TonB transporters PirA and PiuA. Since these transporters also promote the specific uptake of siderophore-drug conjugates, P. aeruginosa exposed to these plant catechols becomes hypersusceptible to this novel class of antibiotics. This unexpected finding suggests a potential therapeutic application for quercetin and chlorogenic acid, which were mainly investigated for their antioxidant and anti-inflammatory properties

    The effects of parasitism and body length on positioning within wild fish shoals

    Get PDF
    The influence of body length and parasitism on the positioning behaviour of individuals in wild fish shoals was investigated by a novel means of capturing entire shoals of the banded killifish (Fundulus diaphanus, Lesueur) using a grid-net that maintained the two-dimensional positions of individuals within shoals. Fish in the front section of a shoal were larger than those in the rear. Individuals parasitized by the digenean trematode (Crassiphiala bulboglossa, Haitsma) showed a tendency to occupy the front of shoals. Parasitized fish were also found more in peripheral positions than central ones in a significant number of shoals. Shoal geometry was affected by the overall parasite prevalence of shoal members; shoals with high parasite prevalence displayed increasingly phallanx-like shoal formations, whereas shoals with low prevalence were more elliptical. There was no relationship between body length and parasite abundance or prevalence in the fish population which suggests body length and parasite status are independent predictors of positioning behaviour. Solitary individuals found outside shoals were both more likely to be parasitized and had higher parasite abundance than individuals engaged in shoaling. Differences in the shoaling behaviour of parasitized and unparasitized fish are discussed in the context of the adaptive manipulation hypothesis

    Assessing Responses of \u3ci\u3eBetula papyrifera\u3c/i\u3e to Climate Variability in a Remnant Population along the Niobrara River Valley in Nebraska U.S. through Dendroecological and Remote Sensing Techniques

    Get PDF
    Remnant populations of Betula papyrifera have persisted in the Great Plains after the Wisconsin Glaciation along the Niobrara River Valley, Nebraska. Population health has declined in recent years, and has been hypothesized to be due to climate change. We used dendrochronological techniques to assess the response of B. papyrifera to microclimate (1950-2014), and satellite imagery [Landsat 5 TM (1985-2011) and MODIS (2000-2014)] derived NDVI as a proxy for population health. Growing-season streamflow and precipitation were positively correlated with raw and standardized tree-ring widths and basal area increment increase. Increasing winter and spring temperatures were unfavorable for tree growth while increasing summer temperatures were favorable in the absence of drought. The strongest predictor for standardized tree-rings was the Palmer Drought Severity Index, suggesting that B. papyrifera is highly responsive to a combination of temperature and water availability. The NDVI from vegetation community was positively correlated with standardized tree-ring growth, indicating the potential of these techniques to be used as a proxy for ex-situ monitoring of B. papyrifera. These results aid in forecasting the dynamics of the species in the face of climate variability and change in both remnant populations and across its current distribution in northern latitudes of North America

    Crystal structure of an HD-GYP domain cyclic-di-GMP phosphodiesterase reveals an enzyme with a novel trinuclear catalytic iron centre

    Get PDF
    Bis-(3′,5′) cyclic di-guanylate (c-di-GMP) is a key bacterial second messenger that is implicated in the regulation of many crucial processes that include biofilm formation, motility and virulence. Cellular levels of c-di-GMP are controlled through synthesis by GGDEF domain diguanylate cyclases and degradation by two classes of phosphodiesterase with EAL or HD-GYP domains. Here, we have determined the structure of an enzymatically active HD-GYP domain protein from Persephonella marina (PmGH) alone, in complex with substrate (c-di-GMP) and final reaction product (GMP). The structures reveal a novel trinuclear iron binding site, which is implicated in catalysis and identify residues involved in recognition of c-di-GMP. This structure completes the picture of all domains involved in c-di-GMP metabolism and reveals that the HD-GYP family splits into two distinct subgroups containing bi- and trinuclear metal centres.</p

    Intestinal Inflammation Responds to Microbial Tissue Load Independent of Pathogen/Non-Pathogen Discrimination

    Get PDF
    The intestinal immune system mounts inflammatory responses to pathogens but tolerates harmless commensal microbiota. Various mechanisms for pathogen/non-pathogen discrimination have been proposed but their general relevance for inflammation control is unclear. Here, we compared intestinal responses to pathogenic Salmonella and non-pathogenic E. coli. Both microbes entered intestinal Peyer’s patches and, surprisingly, induced qualitatively and quantitatively similar initial inflammatory responses revealing a striking discrimination failure. Diverging inflammatory responses only occurred when Salmonella subsequently proliferated and induced escalating neutrophil infiltration, while harmless E. coli was rapidly cleared from the tissue and inflammation resolved. Transient intestinal inflammation induced by harmless E. coli tolerized against subsequent exposure thereby preventing chronic inflammation during repeated exposure. These data revealed a striking failure of the intestinal immune system to discriminate pathogens from harmless microbes based on distinct molecular signatures. Instead, appropriate intestinal responses to gut microbiota might be ensured by immediate inflammatory responses to any rise in microbial tissue loads, and desensitization after bacterial clearance

    Computer simulation of leadership, consensus decision making and collective behaviour in humans

    Get PDF
    The aim of this study is to evaluate the reliability of a crowd simulation model developed by the authors by reproducing Dyer et al.’s experiments(published in Philosophical Transactions in 2009) on human leadership and consensus decision-­making in a computer-­based environment. The theoretical crowd model of the simulation environment is presented, and its results are compared and analysed against Dyer et al.’s original experiments. It is concluded that the results are 11 largely consistent with the experiments, which demonstrates the reliability of the crowd model. Furthermore, the simulation data also reveals several additional new findings, namely: 1) the phenomena of sacrificing accuracy to reach a quicker consensus decision found in ants colonies was also discovered in the simulation; 2) the ability of reaching consensus in groups has a direct impact on the time and accuracy of arriving at the target position; 3) the positions of the informed individuals or leaders in the crowd could have significant impact on the overall crowd movement; 4) the simulation also confirmed Dyer et al.’s anecdotal evidence of the proportion of the leadership in large crowds and its effect on crowd movement. The potential applications of these findings are highlighted in the final discussion of this paper
    • …
    corecore