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ARTICLE

Assessing responses of Betula papyrifera to climate variability
in a remnant population along the Niobrara River Valley in
Nebraska, U.S.A., through dendroecological and remote-sensing
techniques
E. Bumann, T. Awada, B. Wardlow, M. Hayes, J. Okalebo, C. Helzer, A. Mazis, J. Hiller, and P. Cherubini

Abstract: Remnant populations of Betula papyrifera Marshall have persisted in the Great Plains after the Wisconsin Glaciation
along the Niobrara River Valley, Nebraska. Population health has declined in recent years, which has been hypothesized to be
due to climate change. We used dendrochronological techniques to assess the response of B. papyrifera to microclimate (1950–
2014) and the normalized difference vegetation index (NDVI) derived from satellite imagery (Landsat 5 TM (1985–2011) and MODIS
(2000–2014)) as a proxy for population health. Growing-season streamflow and precipitation were positively correlated with raw
and standardized tree-ring widths and basal area increment increase. Increasing winter and spring temperatures were unfavor-
able for tree growth, while increasing summer temperatures were favorable in the absence of drought. The strongest predictor
for standardized tree rings was the Palmer Drought Severity Index, suggesting that B. papyrifera is highly responsive to a
combination of temperature and water availability. The NDVI from the vegetation community was positively correlated with
standardized tree-ring growth, indicating the potential of these techniques to be used as a proxy for ex situ monitoring of
B. papyrifera. These results aid in forecasting the dynamics of the species in the face of climate variability and change in both
remnant populations and across its current distribution in northern latitudes of North America.

Key words: paper birch, tree rings, riparian, MODIS, Landsat, NDVI, water, temperature, Nebraska Sandhills.

Résumé : Des populations reliques de Betula papyrifera Marshall ont persisté dans les grandes plaines après la glaciation du
Wisconsin le long de la vallée de la rivière Niobrara, au Nebraska. L’état de santé des populations s’est détérioré au cours des
récentes années, vraisemblablement à cause des changements climatiques. Nous avons utilisé les techniques dendrochronologiques pour
évaluer la réaction de B. papyrifera au microclimat (1950–2014), ainsi que l’indice de végétation NDVI dérivé de l’imagerie satellitaire
(Landsat 5 TM (1985–2011) et MODIS (2000–2014)) en tant que substitut reflétant l’état de santé des populations. La précipitation et
l’écoulement fluvial durant la saison se croissance étaient positivement corrélés avec l’augmentation de l’accroissement de la
surface terrière et la largeur brute et standardisée des cernes annuels. L’augmentation des températures hivernales et print-
anières était défavorable pour la croissance des arbres tandis que l’augmentation des températures estivales était favorable en
l’absence de sécheresse. Le meilleur prédicteur pour les cernes annuels standardisés était l’indice de sévérité de la sécheresse de
Palmer, ce qui indique que B. papyrifera est très sensible à une combinaison de température et de disponibilité de l’eau. L’indice
NDVI de la communauté végétale était positivement corrélé à la croissance des cernes annuels standardisés, ce qui indique que
ces techniques peuvent être utilisées comme substitut pour le suivi ex situ de B. papyrifera. Ces résultats vont aider à prédire la
dynamique de cette espèce face aux changements climatiques tant dans les populations reliques que partout dans son aire de
répartition actuelle sous les latitudes septentrionales de l’Amérique du Nord. [Traduit par la Rédaction]

Mots-clés : bouleau blanc, cernes annuels, riverain, MODIS, Landsat, indice de végétation NDVI, eau, température, dunes du
Nebraska.

1. Introduction
Paper birch (Betula papyrifera Marshall) is a widely distributed

deciduous tree species across continental North America. It grows
in the boreal forest from Newfoundland in eastern Canada all
the way to northwestern Alaska (United States), crossing the
Canadian prairies in Manitoba, Saskatchewan, and Alberta.
Betula papyrifera also extends south from Washington in the

western United States to Montana and through the Great Lake
States to New England in the eastern United States. Scattered
populations can be found in the Great Plains of Montana and
North Dakota, the Black Hills of South Dakota, the Appalachian
Mountains, and the Front Range of Colorado (Burns and
Honkala 1990; map: http://nativeplantspnw.com/paper-birch-
betula-papyrifera/). As a boreal species, B. papyrifera is adapted to
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the cold northern climate (Fowells 1965; Stroh and Miller 2009)
and has been found to have mixed responses to temperature,
especially during the growing season. Warming temperatures in
the spring can result in an earlier bud burst, which can have
positive impacts on growth due to increased cambial activity
when water is available (Karlsson et al. 2004; Hollesen et al. 2015;
Li et al. 2016), but this comes with a risk of early season frost,
which can damage and kill newly emerging buds and rootlets and
may result in crown dieback (Pomerleau 1991). Water availability
has also been shown to positively affect the performance of the
species (Kharuk et al. 2014; Li et al. 2016). Water stress — including
both excess water and drought — can cause defoliation (Wang
et al. 2016), leading to suppressed tree-ring growth and perfor-
mance for up to 4 years following defoliation (Karlsson et al. 2004).

After the Wisconsin Glaciation, remnant stands of B. papyrifera
have persisted in the Great Plains but with declining presence
(Wright 1970; Stroh and Miller 2009). One of these ecotypes is
located along the Niobrara River Valley in north-central Nebraska,
where the species can be found in north-facing canyons and along
riverbanks. The valley plays an important ecological role as an
ecotone where grassland and forest species converge, supporting
a diverse array of vegetation that is rarely found in close proximity
elsewhere (Stroh and Miller 2009). Short grass species from the
semi-arid grasslands of the surrounding Sandhills, as well as
grasses representing the mixed and tall grass prairies, can be
found alongside forest species representing the western conifer-
ous, eastern deciduous, and boreal communities.

On a continental scale, one of the main threats to B. papyrifera
has been increased climate variability, specifically temperature
and precipitation. The species rarely occurs in areas where aver-
age July temperature exceeds 21 °C (Stroh and Miller 2009). In
comparison, the Niobrara River Valley July average temperature is
approximately 23.8 °C. Stroh and Miller (2009) attributed the
health of the Niobrara River Valley populations to a cooler local-
ized microclimate and the close proximity to the riverbank. They
reported dieback of B. papyrifera in recent years, which is thought
to have started around the 1980s and is possibly attributed to
temperature increase.

Dendrochronological techniques can be applied to investigate
ecological processes and tree responses to site conditions, which
are then related to tree performance and forest productivity and
health (Cherubini et al. 2002). Factors such as site characteristics,
abiotic and biotic environment, management practices, species
growth habits, and genetics have been reported to influence the
formation and growth of tree rings and, thus, forest productivity
(e.g., Schweingruber 1996; Di Matteo et al. 2010; Aus Der Au et al.
2018). The normalized difference vegetation index (NDVI) is an-
other tool that is commonly used in remote-sensing applications
as a measure of photosynthetic activity, which can then be related
to plant health and growth through examining the ratio of spec-
tral reflectance between the red and near-infrared regions of the
electromagnetic spectrum (Vicente-Serrano et al. 2016). The few
studies that have explored the relationship between NDVI and
tree rings in the literature have shown that the relationship de-
pends on vegetation type, spatial scale, period of study, and the
abiotic and biotic environments (Bunn et al. 2013; Vicente-Serrano
et al. 2016; Bhuyan et al. 2017). While tree-ring studies are impor-
tant for quantifying long-term variability in forest productivity,
preparing the chronologies can be time consuming and costly on
a large scale. On the other hand, NDVI provides a good measure
for landscape photosynthetic activity and site productivity and
can be used to monitor landscape processes on a regular basis.
Therefore, investigating how these two techniques relate to each
other can improve our understanding of forest growth and pro-
ductivity, carbon budgets, and forests response to climate vari-
ability and change (Bhuyan et al. 2017).

At present, few studies have attempted to correlate tree rings
with NDVI (Bhuyan et al. 2017), and even fewer have been con-

ducted on this remnant B. papyrifera ecotype (Stroh and Miller
2009). It is unknown how climate fluctuations impact the perfor-
mance of this species. The aims of this research are to (i) use
dendrochronological techniques to assess the past responses and
performance of B. papyrifera to intra- and inter-annual microcli-
matic variability and (ii) determine if satellite imagery can serve as
a proxy for assessing tree health by relating vegetation indices
such as NDVI to tree-ring characteristics. This study focuses on a
time period between 1950 and 2014. Results can have manage-
ment implications and are important for the development of bio-
geographical and ecophysiological predictive models aimed at
forecasting the dynamics and performance of this species in the
face of future climate variability and change in both remnant popula-
tions and across its current habitat range in northern latitudes.

2. Materials and methods

2.1. Site selection
The study area was located at the Nature Conservancy’s Niobrara

Valley Preserve in north-central Nebraska, centered at 42°78=34==N,
100°02=80==W, and encompasses nearly 227 km2 (Fig. 1). Seven
north-facing B. papyrifera stands were selected along a 27 km sec-
tion of the river. The valley is 60 to 90 m deep and ranges between
0.8 and 3.2 km in width. The water flow in the adjacent Niobrara
River and its tributaries is in part determined by groundwater
contribution (Szilagyi et al. 2003), as the groundwater flows over
bedrock, therefore creating a high water table. Soil type is mostly
alluvial fine-grained sand with a small amount of coarser material
(Cady and Scherer 1946). Water moves in an easterly direction at a
rate of roughly 0.3 m·d−1 through aquifers at a downward slope of
anywhere from 2.5 to 13 m for every kilometre of easterly travel
(Bradley 1956).

Sites were identified visually and accessed via the river by a
canoe. Betula papyrifera individuals were mostly present close to
the river as part of a deciduous woody species community. Indi-
viduals were found only on north-facing slopes and growing from
pre-existing root crowns. We did not observe any new seedlings or
saplings in sites examined. The upland plant community was
dominated by coniferous species, including Pinus ponderosa Douglas
ex P. Lawson & C. Lawson and the native invasive Juniperus
virginiana L. mixed with grasses. Sites were marked and Global
Positioning System (GPS) locations were acquired for all trees (Fig. 1).

2.2. Microclimate
Precipitation and temperature data were acquired from the

Ainsworth and Springview weather stations, located less than 35 km
away, via the High Plains Regional Climate Center (HPRCC), Uni-
versity of Nebraska-Lincoln (HPRCC, https://climod.unl.edu/). Long-
term (1901–2015) annual precipitation ranged between 241 and
938 mm and averaged 572 mm (Figs. 2 and 3). January average
minimum and maximum temperatures were −12.3 °C and 0.4 °C,
respectively, and July average minimum and maximum tempera-
tures were 16.5 °C and 31.2 °C, respectively (Fig. 3). Monthly and
annual Palmer Drought Severity Index (PDSI) data were acquired
from NOAA (https://www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.
jsp#), calculated for the region of north-central Nebraska. PDSI is
effective in determining long-term drought and takes into ac-
count potential evapotranspiration (Fig. 2). Monthly streamflow
rate was obtained from the U.S. Geological Survey (USGS) National
Water Information System (https://waterdata.usgs.gov/nwis/uv/?site_
no=06461500&agency_cd=USGS&referred_module=sw), Sparks, Ne-
braska (station code: 06461500; 42°54=14==N, 100°26=13==W). The
stream gauge is located approximately 30 km from the study sites
(Fig. 3). USGS uses the information from the gauges for decision-
making on water management and as a warning system during
extreme weather events.
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2.3. Tree-ring parameters
We selected the largest trees based on healthiest visual appear-

ance and largest diameter measured at breast height (DBH; Fig. 4).
A total of 180 cores, i.e., four cores from each of 45 trees, were
sampled at 1.3 m from the base, at 90° around the trunk, repre-
senting the north, south, east, and west sides (Maeglin 1979). The
oldest ring record dated back to 1894, with the majority of consis-
tent records across trees rings dating back to the early 1950s, thus
the time frame selected for this study. Cores were placed on trays,
glued to wooden dowels, and sanded flat and smoothed with 150-,
220-, 440-, and 600-grit sandpaper. Cores from southern- and
western-facing sides of the trunk were sent to the tree-ring den-
drochronological laboratory at the Swiss Federal Institute for For-
ests, Snow and Landscapes (WSL), Switzerland (the reason for
sending half of the samples to WSL was to measure both width
and carbon and oxygen isotope ratios in annual tree rings; unfor-
tunately we did not have enough wood material per annual ring to
perform the isotope analysis). Northern- and southern-facing
cores remained at the Forest Ecophysiology Lab at the University
of Nebraska (UNL) where they were scanned at 3200 dpi and indi-
vidual ring widths were measured to the nearest 100th of a milli-
metre (0.01 mm) and cross-dated with the Windendro software
platform. At WSL, the rings were measured under a microscope to
the nearest 0.01 mm using a linear table, “LINTAB” (Rinn 2003).
The data were recorded, presented, and analyzed in TSAPWin
(Time Series Analysis and Presentation, Frank Rinn, Heidelberg,
Germany; Stokes and Smiley 1968; Rinn 2003). After visually cross-
dating each tree core (north, south, east, and west), each sample
plot was visually cross-dated in TSAPWin. Missing rings were in-
serted manually with a value of 0 to complete the chronology. The
visually cross-dated data were imported into CONFECHA for sta-

tistical analysis to check cross-dating accuracy (Grissino-Mayer
2001). Additionally, we determined the “Gleichläufigkeit” (Glk),
which is a measure of the year-to-year agreement between the
interval trends of two chronologies based upon the sign of agree-
ment and usually expressed as a percentage of cases of agreement
(Eckstein and Bauch 1969), as well as the cross-dating index (CDI),
which is a combination of the Glk and the t value of the chronol-
ogy (Rinn 2003). Basal area increment (BAI) increase was calcu-
lated from raw tree-ring measurements. Raw tree-ring widths
were standardized using the “detrendeR” package (Campelo 2012).
Input values for the detrending procedure were set to spline
length 20 and bandwidth 0.65, P < 0.05. Standardization removes
biological factors of the individual samples due to age, distur-
bance, stand density, and size, leaving a value influenced primar-
ily by climate (Cook and Holmes 1986).

2.4. Tree-ring statistical analysis
Statistical analysis was carried out in R using linear mixed mod-

eling through the package “lme4” (Bates et al. 2015). In all models
considered, independent variables were represented by monthly
cumulative precipitation, monthly average streamflow, monthly
(mean, maximum, and minimum) temperatures, and annual PDSI,
with year, stand, and sample (tree ID) as random effects. Monthly
inclusion began in the growing season of the previous year
through October of the current year. All models considered 1950–
2014 for the time period, and individual trees were considered as
separate response variables. Through early model creation, all
parameters of spatial distinction (i.e., slope, aspect, distance and
elevation to ridgeline and river edge) were removed as they did
not show any statistical significance. They were thus not consid-
ered in the creation of final models.

Fig. 1. Location of the study area along the Niobrara River Valley in north-central Nebraska, U.S.A. Locations of the examined Betula papyrifera
stands are marked with black dots. [Colour version available online.]
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Stepwise backward selection is a process wherein a model is
selected by removing one variable at each step of the process
based on t statistics of their estimated coefficients (Statistical
Consulting Group (UCLA) 2006). It is useful for selecting models
from a moderate-sized pool of all potential inclusions. Concerns
arise from using this method as variables that are significant to
the project at hand may be removed in early selection. When this
method is employed, one must give consideration to the legiti-
macy of the selected product from a real-life perspective (Burnham
and Anderson 2002).

All variables for consideration were included in a “global
model” from which variables were systematically removed. At
every step, all variables were individually tested for inclusion or

removal using a �2 test based on their P value, and a new model
was created using the significant variables (P < 0.05). This process
was repeated until the highest calculated P value of variable re-
moval was P < 0.05. At this point, model selection was complete
and the final model was considered determined.

2.5. Landsat and MODIS NDVI image analysis
Landsat 5 Thematic Mapper (hereafter simply “Landsat”) offers

a spatial resolution (30 m) image with 16-day repeat cycle between
image acquisitions and data dating back to the 1980s, which
serves as a valuable information source on landscape patterns and
conditions over the study area. Landsat-derived NDVI data were
used in this study as a proxy of plant health and productivity.

Fig. 2. Annual precipitation, average air temperature, streamflow, and Palmer Drought Severity Index (PDSI) for the study area along the
Niobrara River Valley in north-central Nebraska. Dashed lines describe the parameter trend over time.

Fig. 3. Long-term average monthly streamflow of the Niobrara River (m3·s−1), air temperature (°C), and precipitation (mm) between 1950 and 2014.
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Images were acquired from Google Earth Engine using the “LANDSAT/
LT5_L1T_32DAY_NDVI” dataset with the Landsat cloud score algo-
rithm applied to every available scene through the growing sea-
son, March through October, from 1985 to 2011. Pixels identified
as “cloud” or “primarily water” were removed. The NDVI was
calculated as the ratio of reflectance between the red (R, 630–
690 nm) and near-infrared (NIR, 760–900 nm) regions of the elec-
tromagnetic spectrum as NDVI = (NIR − R)/(NIR + R).

NDVI values fall within the range of −1 to 1. The series of
Landsat-based NDVI images available during the March to October
time period for each year were temporally stacked for each image
pixel. The maximum NDVI value was selected at the pixel level for
each individual year to represent a measure of annual productiv-
ity. A total of 16 annual, maximum-value NDVI images were pro-
duced and compared with annual tree-ring measurements for
each corresponding year. Years were excluded if they did not have
adequate cloud-free Landsat imagery to calculate maximum NDVI
values that could be used in this study. As a result, annual repre-
sentative images comprised of data from June, July, and August
of 1988, 1990–2001, and 2003–2007 were used to create a raster of
pixel-based correlation (Pearson’s R2) values against tree-ring
widths.

While Landsat images provide a high spatial resolution, the
drawback to using it comes by way of cloud obstruction. We ap-
plied similar methods for comparison with MODIS imagery,
which offers a consistent, high temporal resolution multi-spectral
dataset useful for examining surface changes throughout the year
with imagery recorded every 1–2 days since December 1999 to
present at 250–1000 m pixel resolution. NDVI image data were
acquired through Google Earth Engine from the MODIS Terra
Daily NDVI (image collection: “MODIS/MOD09GA_NDVI”) data set
for all available dates between March and October from 2000 to
2014. Cumulative growing season NDVI from MODIS imagery
(Reed et al. 1996; Li et al. 2015; Kumar and Mutanga 2017) has been
shown to provide a stronger estimate of aboveground biomass
and seasonal productivity than single-date NDVI. Summed NDVI
through distinct portions of the growing season were also exam-
ined and correlated to tree-ring growth. NDVI images were
“stacked” for the time periods of March–October (full growing
season), March–May (early season), June–August (mid-season),
August–October (late season), May, June, July, and August.
“Summed NDVI” or “accumulated NDVI values” for each date for
these growing season windows within a specific year, which is
considered a spectral-based proxy of general vegetation produc-
tivity, were correlated using the Pearson’s R2 at the pixel level
with tree-ring width.

2.6. Relationships between tree rings and NDVI
Tree-ring chronologies have been shown to reflect a strong,

significant correlation with NDVI in other studies (He and Shao

2006; Forbes et al. 2010; Bhuyan et al. 2017). Tree coverage in each
stand was smaller than an individual pixel’s area in either the
Landsat (30 m) or MODIS (250 m) imagery, which resulted in much
of the area being comprised of non-B. papyrifera land cover types.
The landscape position of B. papyrifera in remnant populations on
steep banks close to the river was an additional reason that the
remote-sensing image pixels containing the tree stands could not
be directly compared. The stands were located near water, and
many of the image pixels containing the tree stands were predom-
inately covered by either water or shade from the steep riverbank.
In both cases, the spectral signal and resultant NDVI would be
primarily representative of the water and shaded area rather than
the actual conditions of the B. papyrifera. As a result, direct, pixel-
level comparison between the NDVI image pixels and the ground
data could not be compared. This required alternative areas of a
different land cover type to be used as a productivity proxy to
compare with the traditional tree-ring data.

To address this, we investigated whether a relationship be-
tween B. papyrifera and the pixel-based NDVI signal during the
peak growing season could be established with plot-based vegeta-
tion in the adjacent community. If successful, this method could
then be applied elsewhere to similar areas. The adjacent grass-
lands were partitioned into eight plots (as shown in Fig. 7), across
a series of management areas along the Niobrara Valley Preserve
for long-term monitoring. These plots included rotational grazing
(plots 1, 2, 3), patch-burn cattle grazing (plot 4), patch-burn cattle
grazing, burned in 2015 (plot 5), unburned cattle grazing, control
(plot 6), bison grazing, burned in 2015 (plot 7), and bison grazing,
unburned (plot 8). In the patch-burn grazed areas, there were no
fires in 2016, so the two grids in each site were in unburned areas
(for at least several years) versus burned areas in 2015. The patch-
burn cattle control site is unburned but grazed season-long at the
same stocking rate as the patch-burn cattle pasture. In the rota-
tional grazing treatments, each pasture is grazed at a different
time each year.

Each plot consisted of an 8 m × 6 m grid (eight GPS points
east–west; six GPS points north–south) encompassed in an area of
640 × 480 m2. At each GPS point, a 1 m2 quadrat was dropped and
vegetation was sampled. Canopy height and percent cover of each
vegetation functional group (grass, shrubs and forbs), as well as
litter, standing dead, and bare soil, were recorded. Topography
and vegetation composition were considered in reference to pixel-
based NDVI and tree-ring growth correlation of B. papyrifera to
identify potential areas of proxy monitoring based on their vege-
tation and (or) topographical characteristics. We calculated the
Pearson’s R2 value between averaged annual ring growth (raw,
standardized, BAI,) and the annual representative NDVI values at
each pixel location over the observed area. The R2 values were
organized in a single raster representing the pixel-level correla-
tion to growth.

3. Results

3.1. Site microclimate
Annual cumulative precipitation for the area during the study

period of 1950–2014 averaged 573 ± 18 mm. During the 65-year
study period, annual precipitation did not show any increasing or
decreasing trend over time; instead, precipitation varied annually
around the mean (Fig. 2). The majority (80%–90%) of the annual
precipitation fell during the growing season between April and
September (Fig. 3). Average annual streamflow ranged between
17 and 26.5 m3·s−1, with a mean annual streamflow of 21.7 ±
0.3 m3·s−1 (Fig. 3). During the study period, average annual stream-
flow declined over time, which was significant at P < 0.1. Streamflow
increased in the spring with snowmelt and declined in July
through September with a decrease in precipitation and increases
in temperature and evapotranspiration demands, before increas-
ing again in October (Fig. 3). Annual PDSI ranged from −4.9 to 6.7,

Fig. 4. Diameter at breast height (DBH) as a function of age of
B. papyrifera trees.
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with a long-term average of 0.9 ± 0.3. During the study period,
annual PDSI exhibited an upward (wetting) trend, which was sig-
nificant at P < 0.1 (P = 0.054) (Fig. 3). Despite this wetting trend,
years of moderate to severe droughts were common and consti-
tuted around 32% of the 65-year period of study.

Average annual air temperature was 8.9 ± 0.1 °C (Fig. 2), with
January mean temperature ranging between −15.1 and 3.0 °C and
showing a slight and statistically significant warming over time
(P < 0.01). March maximum temperatures ranged between 1.8 and
17.6 °C and displayed a significant decreasing trend (P = 0.048;
Supplementary Fig. S11). July maximum temperatures ranged be-

tween 24.4 and 37.4 °C and did not show an increasing or decreas-
ing trend. July mean temperature met or exceeded 21 °C nearly
every year except for 1992 (Supplementary Fig. S11).

3.2. Tree-ring chronologies
Tree diameter was positively and significantly correlated with age

(Fig. 4). Raw tree-ring widths averaged 1.21 ± 0.02 mm·year−1, and
basal area increment (BAI) increase averaged 325.3 ± 4.27 mm2·year−1

(Fig. 5). Both raw tree-ring widths and BAI exhibited a significant
decline in growth over time (P < 0.001). This decrease can be attrib-
uted to the normal growth behavior of B. papyrifera in general, as

1Supplementary material is available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjfr-2018-0206.

Fig. 5. Average annual (A) raw tree-ring width (mm), (B) basal area increment increase (mm2), and (C) standardized ring width (mm) of
B. papyrifera along the Niobrara River Valley between 1950 and 2014.
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growth is rapid for the first 30 years or so and then sharply declines
through maturity (Burns and Honkala 1990). Additionally, as a
tree ages, cambial tissue must be distributed over a greater sur-
face area, which results in narrower rings, i.e., the geometrical age
effect (Sillett et al. 2015). Data standardization resulted in the
removal of any significant trends (P = 0.74) and indicated variabil-
ity around the mean (0.99 ± 0.006 mm), which reflected inter- and
intra-annual fluctuations in the abiotic environment (Fig. 5). A
decline in tree-ring growth rate was observed in six periods (early
1960s, mid-1970s, late 1980s, early 1990s, early 2000s, and in 2012).
These reductions in growth were associated with near-zero or
negative (drought) annual PDSI or in years with lower than aver-
age air temperatures. Above-average tree-ring widths, standard-
ized ring widths, and BAI were observed during wet years or
positive PDSI (e.g., 1983, 1995, and 2009).

3.3. Climate correlations
Previous- and current-year summer and fall streamflow were

positively correlated with raw tree-ring widths, BAI, and standard-
ized ring widths (Fig. 6). Generally, streamflow of the previous July
through fall of the current year was significantly correlated with
standardized tree-ring widths. High precipitation and streamflow
rates during April of the current and previous years seemed to
have a negative effect on tree-ring growth. Increased air temper-
atures of both current and previous years were generally nega-
tively correlated with all measured tree parameters, with few
exceptions (Fig. 6). The strongest predictor for standardized tree-
ring width was PDSI, with values that were significantly and pos-
itively correlated at P < 0.05 for both the previous and current
years. Linear mixed modeling (LMM) highlighted the importance
of mid-season water availability of both previous and current
years, early season temperature of the current year, and late sea-
son temperature of both the previous and current years for tree-
ring growth.

3.4. Comparison of climate correlation and LMM
The standardized ring-width model was the most relevant for

our study. This model indicated only a negative influence of pre-
vious November precipitation on growth, while the R2 showed
significant positive correlation with previous October and December
precipitation (Supplementary Table S21). Pearson’s R2 correlations
were significantly (P < 0.05) negative for previous January and
positive for current June, October, and November. Standardized
tree-ring widths indicated a disagreement where the model
showed late previous season precipitation as negatively impact-
ing growth, while the Pearson R2 showed significant positive cor-
relation to late season precipitation of both the previous and
current years. The LMM and climate correlations all considered
virtually the same pool of variables yet produced slightly different
results, while the overall results were similar. When using back-
wards selection, one must reconsider that variables can be
dropped early in the model creation process, which could later
show significance. One must also consider the overall model as a
whole and interpret its meaning within the ecological context of
the data itself.

Temperature results from the LMM and Pearson R2 were in
general agreement. Increasing temperatures in previous April
and June showed significant negative correlation to standardized
ring growth. The findings portrayed from the LMMs and Pearson
R2 correlations were that increasing winter and spring tempera-
tures are unfavorable for growth while increasing summer tem-
peratures are favorable in the absence of drought.

3.5. NDVI as a proxy for vegetation and B. papyrifera health
Vegetation composition adjacent to B. paryrifera stands were

sampled for both ground-truthing and to identify the vegetation,
topography, and management practices that would provide the
highest correlation with tree rings (Fig. 7). Sampled plots were

dominated by grasses (31.9% to 49% cover), averaging 37.6% ± 0.9%.
Forbs percent cover ranged between 5.4% and 20.7% and averaged
11.5% ± 0.5%. Shrub percent cover ranged between 6.2% and 27.4%
and averaged 17.8% ± 1.1%. Litter percent cover ranged between
36.7% and 67.2% and averaged 52.4% ± 1.5%. Litter composition was
significantly lower in plot 4 (38.4%) and plot 7 (36.1%) relative to
the others. Standing dead vegetation percent cover averaged
6.2% ± 0.5%. Bare ground percent cover ranged between 28.8% and
54.5% and averaged 41.8% ± 1.5%. Bare ground cover was signifi-
cantly high in plots 4 (54%), 5 (54%), and 7 (53%) relative to others.
Canopy height ranged between 26.9 and 41.6 cm and averaged
34.0 ± 1.4 cm (Fig. 7).

Landsat maximum-value NDVI from all vegetation plots fol-
lowed the standardized tree-ring growth trend of B. papyrifera
(Fig. 8; Supplementary Fig. S41). Average Pearson’s R2 correlation
values ranged between 0.36 and 0.76. Plot-level correlation was
highest in plot 2 for standardized ring width at 0.76 and lowest in
plot 8 at 0.36. Regressing standardized ring widths as a function of
maximum NDVI values derived from Landsat showed the highest
correlation with R2 of 0.81 (Fig. 9). A notable significant drop in
Landsat maximum-value NDVI was observed in 2002. Climate re-
cords indicate this year as one of low precipitation, low stream-
flow, warm temperature, and drought, along with decreased ring
growth from the collected B. papyrifera dendrochronological re-
cord. MODIS summed-value NDVI for the periods of July, August,
and August–October reflect the same notable drop in 2002 NDVI
for all eight plot locations as seen in the Landsat maximum-value
NDVI (data not shown).

The correlation rasters were made semi-transparent and over-
lain on a triangulated irregular network (TIN, representative of
the topographical characteristics of the land) representation of
topography, which allowed us to observe any relationship be-
tween topography and (or) vegetation composition as characteris-
tics for identifying other sites of comparative use. Based on R2

values and vegetation communities within the eight sampled
plots on the Nature Conservancy property, there was no obvious
link between vegetation type and NDVI correlation to ring
growth, as plots that contained significant differences of popula-
tion composition typically showed a lower mean R2 value (e.g.,
Supplementary Fig. S41). However, topography similar to that of
B. papyrifera seemed to play a significant role in identifying the
proxy; plots 2, 6, 5, and 3 are all located on rougher areas of the
landscape with greater variations in topographical relief and com-
prised the top half of mean R2 values of standardized ring width
to pixel-level Landsat maximum-value NDVI. Plots 4, 7, 1, and 8
were located on flatter ground and comprised the bottom half
of R2 values of standardized ring width to pixel-level Landsat
maximum-value NDVI (Supplementary Figs. S3 and S41). This ob-
served topographical influence appeared to be unrelated to aspect
or direction, rather better characterized by the land contour of
the general area in question. MODIS summed-value NDVI showed
the strongest relationships during July to both raw and standard-
ized growth and during June–August to standardized growth, and
there was a consistency of the higher mean-correlated vegetation
sampling plots and rough topography, which mostly agrees with
the Landsat maximum-value NDVI results at the plot level (corre-
lations are not shown; Supplementary Fig. S31).

Pixel-level correlation of raw tree-ring width and standardized
tree-ring width between Landsat maximum-value NDVI and MODIS
summed-value NDVI during the summer months showed very
similar results when compared with topography and plot-level
vegetation composition (Supplementary Figs. S2 and S31).

4. Discussion
Annual average precipitation, temperature, and summer (July)

temperature have remained reasonably stable with no upward or
downward trends over the study period. However, the area did
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experience a warming trend in January temperature over time
(Fig. 2). In northern latitudes, warming winter and spring trends
can lead to increased ring growth and treeline advancement into
neighboring tundra areas (Kharuk et al. 2014), as well as wider

seasonal rings created as a result of earlier bud burst and in-
creased cambial growth associated with a longer growing season
(Karlsson et al. 2004; Hollesen et al. 2015; Yang et al. 2017). In this
study, we show that warming January air temperatures had a

Fig. 6. Pearson R2 correlation of tree-ring width (Raw), basal area increment increase (BAI), and standardized tree ring growth (Std) of
B. papyrifera as a function of previous- and current-year precipitation, streamflow, temperature, and PDSI along the Niobrara River Valley,
Nebraska, between 1950 and 2014. *, significance at P < 0.1; **, significance at the P < 0.05. [Colour version available online.]
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negative effect on growth. This may be due to the higher January
minimum temperatures in Nebraska relative to more northern
latitudes causing the species to cross a threshold and (or) to re-
freezing of the roots, which can ultimately lead to reduction in
growth, tree damage (Greenidge 1953; Redmond 1955), or in some

cases death (Pomerleau 1991). Water availability has also been
shown to have a mixed effect on growth in that its availability
encourages establishment and growth of birch species (Li et al.
2016), while water excess (i.e., waterlogged soil) or drought have
been shown to decrease leaf area of birch species (Wang et al.

Fig. 7. Vegetation sampled from eight plots located across a series of management treatments on the Niobrara Valley Preserve, The Nature
Conservancy, on 27 June 2016. Each plot consists of an 8 × 6 grid of GPS points (8 east–west, 6 north–south) encompassed in a 640 m × 480 m
area. The bar plot on the left shows percent cover of litter, standing dead vegetation, grass, forbs, and bare soil. Map on the right shows the
location of the plots relative to sampled trees (white dots). [Colour version available online.]

Fig. 8. Average standardized growth of B. papyifera and Landsat maximum-value NDVI between 1985 and 2011 within the eight 640 m × 480 m
vegetation composition plots sampled in June 2016 by the Nature Conservancy at the Niobrara Valley Preserve in Nebraska. [Colour version
available online.]

Fig. 9. Standardized ring width of B. papyrifera as a function of Landsat maximum-value NDVI observed in adjacent plots in Niobrara River
Valley between 1985 and 2011. Missing points are due to cloud cover.
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2016). Such may be the case here as the standardized model high-
lights a negative growth effect from increased precipitation dur-
ing previous November and current May or late previous and early
current seasons. The defoliation response to excess water may
very well translate into problematic bud formation in the previ-
ous season and bud burst in the following spring. Standardized
tree-ring widths followed PDSI very closely, which suggests that
inter- and intra-annual growth of B. papyrifera is strongly depen-
dent on a combination of temperature and water availability in
that warm and wet conditions during the growing season facili-
tate more growth (Li et al. 2016). This can also be seen notably by
the rapid reductions in standardized ring width during years of
low (dry) PDSI in the late 1980s to early 1990s and the early 2000s
versus an increase in standardized growth during years of high
(wet) PDSI in the early 1980s, mid-1990s, and late 2000s, which
agrees with other studies (Karlsson et al. 2004; Li et al. 2016).
Drought extremes are expected to increase in frequency and du-
ration for the future of the Great Plains (Bathke et al. 2014), which
may impact the health and performance of this remnant forest.

Climate correlations showed streamflow from April through
November of both previous and current years to be significantly
and positively related to growth, agreeing with the inclusion of
August streamflow of both current and previous years but dis-
agreeing with the negative influence of July streamflow to raw
growth and BAI as displayed by the selected models (Supplemen-
tary Table S21). This influence of streamflow on growth might be
explained by some of the unique geology of the Niobrara River
Valley in that the river water, which flows directly over bedrock, is
fed by lateral (easterly) movement of groundwater (Szilagyi et al.
2003). We observed B. papyrifera only growing in close proximity
to the water’s edge in small pockets (Supplementary Table S11).
Combining the shallow fibrous root system of paper birch and the
influence of drought-related conditions on growth, close proxim-
ity of this species to the water table and access to precipitation
water or streamflow are necessary for its success.

NDVI values derived from satellite imagery via both Landsat
and MODIS satellites showed potential use as a proxy for ex situ
B. papyrifera growth monitoring through high Pearson’s R2 values
between ring growth and NDVI at the pixel level. Based on R2

values and vegetation communities within the eight sampled
plots, there was no obvious link between vegetation type and
NDVI correlation to tree-ring growth. However, vegetation on to-
pography, similar to that of B. papyrifera, played a significant role
in identifying the proxy. Other studies have linked satellite NDVI
to climate variables such as temperature, precipitation, and
drought conditions (Baird et al. 2012; Jia et al. 2003) and tree-ring
width to NDVI with mixed success (Coops et al. 1999; Forbes et al.
2010; Vicente-Serrano et al. 2016). For example, Bhuyan et al. (2017)
noted a positive relationship between NDVI and tree rings in
many forests in the Northern Hemisphere; however, the strength
of this relationship depended on spatial scale, forest type (e.g.,
better correlation of NDVI with tree rings of conifers than decid-
uous species), species phenology, climatic zones, and method of
combining NDVI for analysis. Liang et al. (2005) reported strong
relationship between grasslands NDVI and Picea meyeri in the
semi-arid region of northern China. They argued that in semi-arid
regions, such relationships can be expected as both vegetation
types are limited by seasonal precipitation. Similarly, in this
study, where water is a limiting factor, we found that using NDVI
of adjacent pasture lands with similar topographical characteris-
tics to that of B. papyrifera can provide a reliable representation of
tree performance.

5. Conclusion
Dendrochronological techniques were used to identify micro-

climatic drivers of B. papyrifera growth of the Niobrara River Val-
ley. We found intra- and inter-annual averages and patterns of

precipitation, temperature, streamflow, and PDSI to be important
for predicting growth. Climate correlations and LMM analyses
produced similar results with some disagreements but with both
methods agreeing that the strongest predictor for standardized
tree rings was the PDSI, suggesting that B. papyrifera is highly
responsive to a combination of temperature and water. Increasing
winter and spring temperatures were unfavorable for tree
growth, while increasing summer temperatures were favorable in
the absence of drought. Drought is expected to increase in fre-
quency and duration for the future of the Great Plains (Bathke
et al. 2014). Warming conditions are also expected in the northern
latitudes (Soja et al. 2007) and have been shown to impact riparian
ecosystems, leading to decreased biomass of riparian species and
overall species richness and diversity. Riparian communities that
depend on groundwater are predicted to be replaced with more
water-competitive upland communities (Ström et al. 2011). Com-
bining the shallow fibrous root system of B. papyrifera and the
influence of drought-related conditions on growth, the future of
B. papyrifera of the Niobrara River Valley will be dependent on
climate and water availability at key points during the growing
season. Factors such as water pumping for irrigation purposes on
upland sites and expansion of woody species, especially the en-
croachment of Juniperus virginiana (Awada et al. 2013), will affect
the horizontal movement of water over bedrock and impact water
availability for B. papyrifera and should therefore be monitored.

High NDVI values derived from satellites images of adjacent
grasslands correlated with B. papyrifera, indicating that vegetation
that shares the same topographic relief is governed by similar
environmental constraints in semi-arid areas (i.e., water) and can
be used as a proxy to monitor a sparsely populated and (or) remote
species growth ex situ. Results from this study can aid in forecast-
ing the dynamics and thresholds of this species in the face of
climate change in both the remnant populations and across its
current distribution in northern latitudes of North America.
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