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2

1 Abstract

2 Remnant populations of Betula papyrifera have persisted in the Great Plains after the 

3 Wisconsin Glaciation along the Niobrara River Valley, Nebraska. Population health has 

4 declined in recent years, and has been hypothesized to be due to climate change. We 

5 used dendrochronological techniques to assess the response of B. papyrifera to 

6 microclimate (1950-2014), and satellite imagery [Landsat 5 TM (1985-2011) and MODIS 

7 (2000-2014)] derived NDVI as a proxy for population health. Growing-season streamflow 

8 and precipitation were positively correlated with raw and standardized tree-ring widths 

9 and basal area increment increase. Increasing winter and spring temperatures were 

10 unfavorable for tree growth while increasing summer temperatures were favorable in the 

11 absence of drought. The strongest predictor for standardized tree-rings was the Palmer 

12 Drought Severity Index, suggesting that B. papyrifera is highly responsive to a 

13 combination of temperature and water availability. The NDVI from vegetation community 

14 was positively correlated with standardized tree-ring growth, indicating the potential of 

15 these techniques to be used as a proxy for ex-situ monitoring of B. papyrifera. These 

16 results aid in forecasting the dynamics of the species in the face of climate variability and 
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1 change in both remnant populations and across its current distribution in northern 

2 latitudes of North America.

3

4 1. Introduction

5 Paper birch (Betula papyrifera Marshall) is a widely distributed deciduous tree species 

6 across continental North America. It grows in the boreal forest from Newfoundland in 

7 eastern Canada all the way to northwestern Alaska in the U.S., crossing the Canadian 

8 prairies in Manitoba, Saskatchewan and Alberta. B. papyrifera also extends south from 

9 Washington in the western U.S. to Montana, and through the Great Lake States to New 

10 England in the eastern U.S. Scattered populations can be found in the Great Plains of 

11 Montana and North Dakota, the Black Hills of South Dakota, the Appalachian Mountains, 

12 and the Front Range of Colorado (Burns and Honkala 1990; map: 

13 http://nativeplantspnw.com/paper-birch-betula-papyrifera/). As a boreal species, B. 

14 papyrifera is adapted to the cold northern climate (USDA 1965; Stroh and Miller 2009), 

15 and has been found to have mixed responses to temperature especially during the 

16 growing season. Warming temperatures in the spring can result in an earlier bud burst 
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1 which can have positive impacts on growth due to increased cambial activity when water 

2 is available (Karlsson et al. 2004; Hollesen 2015; Li et al. 2016), but this comes with a 

3 risk of early season frost, which can damage and kill newly emerging buds and rootlets 

4 and may result in crown dieback (Pomerleau 1991). Water availability has also been 

5 shown to positively affect the performance of the species (Kharuk et al. 2014; Li et al. 

6 2016). Water stress - including both excess water and drought - can cause defoliation 

7 (Wang et al. 2016), leading to suppressed tree-ring growth and performance for up to four 

8 years following defoliation (Karlsson et al. 2004).  

9 After the Wisconsin Glaciation, remnant stands of B. papyrifera have persisted in the 

10 Great Plains but with declining presence (Wright 1970; Stroh and Miller 2009). One of 

11 these ecotypes is located along the Niobrara River Valley in north-central Nebraska, 

12 where the species can be found in north-facing canyons and along river banks. The valley 

13 plays an important ecological role as an ecotone where grassland and forest species 

14 converge, supporting a diverse array of vegetation that is rarely found in close proximity 

15 elsewhere (Stroh and Miller 2009). Short grass species from the semi-arid grasslands of 

16 the surrounding Sandhills, as well as grasses representing the mixed and tall grass 
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1 prairies can be found alongside forest species representing the western coniferous, 

2 eastern deciduous and boreal communities. 

3 On a continental scale, one of the main threats to B. papyrifera has been increased 

4 climate variability, specifically temperature and precipitation. The species rarely occurs in 

5 areas where average July temperature exceeds 21˚C (Stroh and Miller 2009). In 

6 comparison, the Niobrara River Valley July average temperature is approximately 23.8˚C. 

7 Stroh and Miller (2009) attributed the health of the Niobrara River Valley populations to a 

8 cooler localized microclimate and the close proximity to the river bank. They reported 

9 dieback of B. papyrifera in recent years which is thought to have started around the 1980s, 

10 and possibly attributed to temperature increase. 

11 Dendrochronological techniques can be applied to investigate ecological processes and 

12 tree responses to site conditions, which are then related to tree performance and forest 

13 productivity and health (Cherubini et al. 2002). Factors, such as site characteristics, abiotic 

14 and biotic environment, management practices, species growth habits, and genetics have been 

15 reported to influence the formation and growth of tree rings, and thus forest productivity (e.g., 

16 Schweingruber 1996; Di Matteo et al. 2010; Aus der Au et al. 2018). The normalized difference 
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1 vegetation index (NDVI) is another tool that is commonly used in remote sensing 

2 applications as a measure of photosynthetic activity, which can then be related to plant 

3 health and growth, through examining the ratio of spectral reflectance between the red 

4 and near-infrared regions of the electromagnetic spectrum (Vicente-Serrano et al. 2016). 

5 The few studies that have explored the relationship between NDVI and tree rings in the 

6 literature have shown that the relationship depends on vegetation type, spatial scale, 

7 period of study, and the abiotic and biotic environments (Bunn et al. 2013; Vicente-

8 Serrano et al. 2016; Bhuyan et al. 2017). While tree rings studies are important for 

9 quantifying long-term variability in forest productivity, preparing the chronologies can be 

10 time consuming, and costly on a large scale. On the other hand, NDVI provides a good 

11 measure for landscape photosynthetic activity and site productivity and can be used to 

12 monitor landscape processes on a regular basis. Therefore, investigating how these two 

13 techniques relate to each other can improve our understanding of forest growth and 

14 productivity, carbon budgets and forests response to climate variability and change 

15 (Bhuyan et al. 2017). 
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1 At present, few studies have attempted to correlate tree rings with NDVI (Bhuyan et al. 

2 2017), and even fewer have been conducted on this remnant B. papyrifera ecotype (Stroh 

3 and Miller 2009). It is unknown how climate fluctuations impact the performance of this 

4 species. The aims of this research are to: 1) use dendrochronological techniques to 

5 assess the past responses and performance of B. papyrifera to intra- and inter-annual 

6 microclimatic variability; and 2) determine if satellite imagery can serve as a proxy for 

7 assessing tree health by relating vegetation indices like NDVI to tree-ring characteristics. This 

8 study focuses on a time period spanning between 1950 and 2014. Results can have management 

9 implications and are important for the development of biogeographical and ecophysiological 

10 predictive models aimed at forecasting the dynamics and performance of this species in the face 

11 of future climate variability and change in both remnant populations and across its current habitat 

12 range in northern latitudes.

13

14 2. Materials and methods 

15 2.1. Sites selection

16 The study area was located at the Nature Conservancy Niobrara Valley Preserve north-

17 central Nebraska, centered at 42°78’34”N, 100°02’80”W and encompasses nearly 227 

18 km2 (Fig. 1). Seven north-facing B. papyrifera stands were selected along a 27 km section 
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1 of the river owned by The Nature Conservancy. The valley is 60 to 90 m deep, and ranges 

2 between 0.8 and 3.2 km in width. The water flow in the adjacent Niobrara River and its 

3 tributaries is in part determined by groundwater contribution (Szilagyi et al. 2002), as the 

4 groundwater flows over bedrock, therefore creating a high water table. Soil type is mostly 

5 alluvial fine-grained sand with a small amount of coarser material (Cady and Sherer 

6 1946). Water moves in an easterly direction at a rate of roughly 0.3 md-1 through aquifers 

7 at a downward slope of anywhere from 2.5-13 m per every kilometer of easterly travel 

8 (Bradley 1956).

9 Sites were identified visually and accessed via the river by a canoe. B. papyrifera 

10 individuals were mostly present close to the river as part of a deciduous woody species 

11 community. Individuals were found only on north-facing slopes and growing from pre-

12 existing root crowns. We did not observe any new seedlings or saplings in examined sites. 

13 The upland plant community was dominated with coniferous species including Pinus 

14 ponderosa and the native invasive Juniperus virginiana mixed with grasses. Sites were 

15 marked and Global Positioning System (GPS) locations were acquired for all trees (Fig. 

16 1). 
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1

2 2.2. Microclimate 

3 Precipitation and temperature data were acquired from the Ainsworth and Springview 

4 weather stations, located less than 35 km away, via the High Plains Regional Climate 

5 Center (HPRCC), University of Nebraska-Lincoln (HPRCC, https://climod.unl.edu/). 

6 Long-term (1901-2015) annual precipitation ranged between 241 and 938 mm and 

7 averaged 572 mm (Figs. 2 and 3). January average minimum and maximum 

8 temperatures were -12.3 °C and 0.4 °C, respectively, and July average minimum and 

9 maximum temperatures were 16.5 °C and 31.2 °C, respectively (Fig. 3). Monthly and annual 

10 Palmer Drought Severity Index (PDSI) data were acquired from NOAA 

11 (https://www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp#), calculated for the region of 

12 north-central Nebraska. PDSI is effective in determining long-term drought and takes into account 

13 potential evapotranspiration (Fig. 2).  Monthly streamflow rate was obtained from the USGS 

14 National Water Information System 

15 (https://waterdata.usgs.gov/nwis/uv/?site_no=06461500&agency_cd=USGS&referred_

16 module=sw), Sparks NE (Station code: 06461500; 42°54’14”N, 100°26’13”W). The 

17 stream gauge is located approximately 30 km from the study sites (Fig. 3). USGS uses 
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1 the information from the gauges for decision making on water management and as a 

2 warning system during extreme weather events. 

3

4 2.3. Tree-ring parameters

5 We selected the largest trees based on healthiest visual appearance and largest 

6 diameter measured at breast height (DBH; Fig. 4). A total of 180 cores, i.e., four cores 

7 from each of 45 trees were sampled, at 1.3 m from the base, at 90° around the trunk; 

8 representing the north, south, east, and west sides (Maeglin 1979). The oldest ring record 

9 dated back to 1894, with the majority of consistent records across trees rings dating back 

10 to the early 1950s, thus the time frame selection for this study. Cores were placed on 

11 trays, glued to wooden dowels and sanded flat and smoothed with 150, 220, 440, and 

12 600 grit sandpaper. Cores from southern and western facing sides of the trunk were sent 

13 to the tree-ring dendrochronological laboratory, at the Swiss Federal Institute for Forests, 

14 Snow and Landscapes (WSL), Switzerland (the reason for sending half of the samples to 

15 WSL was to measure both width and carbon and oxygen isotope ratios in annual tree 

16 rings, unfortunately we did not have enough wood material per annual ring to perform the 
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1 isotope analysis). Northern and southern facing cores remained at the Forest 

2 Ecophysiology Lab at the University of Nebraska (UNL) where they were scanned at 3200 

3 dpi and individual ring widths were measured to the nearest hundredth of a millimeter 

4 (0.01 mm) and crossdated with the Windendro software platform. At WSL, the rings were 

5 measured under a microscope to the nearest 0.01 mm using a linear table, “LINTAB” 

6 (Rinn 2003). The data were recorded, presented and analysed in TSAPWin (Time Series Analysis 

7 and Presentation, Frank Rinn, Heidelberg, Germany; Stokes and Smiley 1968; Rinn 2003). 

8 After visually crossdating each tree core (north, south, east, and west), each sample plot was 

9 visually crossdated in TSAPWin. Missing rings were inserted manually with a value of 0 to 

10 complete the chronology. The visually crossdated data were imported into CONFECHA 

11 for statistical analysis to check crossdating accuracy (Grissino-Mayer 2001). Additionally, 

12 we determined the Gleichläufigkeit (Glk) which is a measure of the year-to-year agreement 

13 between the interval trends of two chronologies based upon the sign of agreement and usually 

14 expressed as a percentage of cases of agreement (Eckstein and Bauch 1969), as well as the cross 

15 dating index (CDI) which is a combination of the Glk with the t-value of the chronology (Rinn 

16 2003). Basal area increment (BAI) increase was calculated from raw tree-ring 

17 measurements. Raw tree-ring widths were standardized using the “detrendeR” package 
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1 (Campelo 2012). Input values for the detrending procedure were set to spline length 20 

2 and bandwidth 0.65, P < 0.05. Standardization removes biological factors of the individual 

3 samples due to age, disturbance, stand density, and size, leaving a value influenced primarily 

4 by climate (Cook and Holmes 1986).

5

6 2.4. Tree-ring statistical analysis

7 Statistical analysis was carried out in R using linear mixed modeling through the 

8 package “Lme4” (Bates et al. 2015). In all models considered, independent variables were 

9 represented by monthly cumulative precipitation, monthly average streamflow, monthly 

10 (mean, maximum and minimum) temperatures, and annual Palmer Drought Severity 

11 Index (PDSI) with year, stand, and sample (tree ID) as random effects. Monthly inclusion 

12 began in the growing season of the previous year through October of the current year. All 

13 models considered 1950 - 2014 for the time period and individual trees considered as 

14 separate response variables. Through early model creation, all parameters of spatial 

15 distinction (i.e., slope, aspect, distance/elevation to ridgeline and river edge) were 

16 removed as they did not show any statistical significance. They were thus not considered 
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1 in the creation of final models. 

2 Stepwise backward selection is a process wherein a model is selected by removing one 

3 variable each step of the process based on t-statistics of their estimated coefficients 

4 (UCLA 2006). It is useful for selecting models from a moderate-sized pool of all potential 

5 inclusions. Concerns arise from this method as variables that are significant to the project 

6 at hand may be removed in early selection. When this method is employed, one must 

7 give consideration to the legitimacy of the selected product from a real-life perspective 

8 (Burnham and Anderson 2002).  

9 All variables for consideration were included in a “global model” from which variables 

10 were systematically removed. At every step, all variables were individually tested for 

11 inclusion or removal using a Chi-square test based on their P-value, and a new model 

12 was created using the significant variables (P < 0.05). This process was repeated until 

13 the highest calculated P-value of variable removal was P < 0.05. At this point, model 

14 selection was completed and the final model considered determined. 

15  

16 2.5. Landsat and MODIS NDVI image analysis
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1 Landsat 5 Thematic Mapper (TM) offers a spatial resolution (30 m) image with 16-day 

2 repeat cycle between image acquisitions and data dating back to the 1980s which serves 

3 as a valuable information source on landscape patterns and conditions over the study 

4 area. Landsat TM-derived Normalized Difference Vegetation Index (NDVI) data were 

5 used in this study as a proxy of plant health and productivity. Images were acquired from 

6 Google Earth Engine using the “LANDSAT/LT5_L1T_32DAY_NDVI” dataset with the 

7 Landsat cloud score algorithm applied to every available scene through the growing 

8 season, March through October, from 1985 - 2011. Pixels identified as “cloud” or 

9 “primarily water” were removed. The NDVI was calculated as the ratio of reflectance 

10 between the red (R 630 - 690 nm) and near-infrared (NIR 760 - 900 nm) regions of the 

11 electromagnetic spectrum as [NDVI = (NIR - R)/(NIR + R)].

12 NDVI values fall within the range of -1 to 1. The series of Landsat-based NDVI images available 

13 during the March to October time period for each year were temporally stacked for each image 

14 pixel. The maximum NDVI value was selected at the pixel level for each individual year to 

15 represent a measure of annual productivity. A total of 16 annual, maximum NDVI images were 

16 produced and compared to annual tree ring measurements for each corresponding year. Years were 

17 excluded if they did not have adequate cloud-free Landsat imagery to calculate maximum NDVI 

18 values that could be used in this study. As a results, annual representative images comprised of 
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1 data from June, July, and August of 1988, 1990 - 2001, and 2003 - 2007 were used to create a 

2 raster of pixel-based correlation (Pearson’s R2) values against tree-ring widths. 

3 While Landsat images provide a high spatial resolution, the drawback to using it comes 

4 by way of cloud obstruction. We applied similar methods for comparison to MODIS 

5 imagery which offers a consistent, high temporal resolution multispectral dataset useful 

6 for examining surface changes throughout the year with imagery recorded every 1 - 2 

7 days since December 1999 to present at 250 - 1000 m pixel resolution. NDVI image data 

8 were acquired through Google Earth Engine from the MODIS Terra Daily NDVI (Image 

9 collection: ‘MODIS/MOD09GA_NDVI’) data set for all available dates between March and 

10 October from 2000 - 2014. Cumulative growing season NDVI from MODIS imagery (Reed 

11 et al. 1996; Li et al. 2015; Kumar and Mutanga 2017) has been shown to provide a 

12 stronger estimate of aboveground biomass, and seasonal productivity, than single-date 

13 NDVI. Summed NDVI through distinct portions of the growing season were also examined 

14 and correlated to tree-ring growth. NDVI images were “stacked” for the time periods of 

15 March - October (full growing season), March - May (early season), June - August (mid-

16 season), August – October (late season), May, June, July, and August. “Summed-NDVI” 

Page 15 of 46



16

1 or “accumulated NDVI values” for each date for these growing season windows within a specific 

2 year, which is considered a spectral-based proxy of general vegetation productivity were 

3 correlated using the Pearson’s R2 at the pixel level with tree-ring width. 

4

5 2.6. Relationships between tree rings and NDVI

6 Tree-ring chronologies have been shown to reflect a strong, significant correlation with 

7 NDVI in other studies (Jicheng and Xuemei 2005; Forbes et al. 2010; Bhuyan et al. 2017).  

8 Tree coverage in each stand was smaller than an individual pixel’s area in either the Landsat 

9 (30 m) or MODIS (250 m) imagery, which resulted in much of the area being comprised of non-

10 B. papyrifera land cover types. Landscape position of B. papyrifera in remnant populations on 

11 steep banks close to the river was an additional reason the remote sensing image pixels containing 

12 the tree stands could not be directly compared. The stands were located near water and many of 

13 the image pixels containing the tree stands were predominately covered by either water or shade 

14 from the steep river bank.  In both cases, the spectral signal and resultant NDVI would be primarily 

15 representative of the water and shaded area rather than the actual conditions of the B. papyrifera. 

16 As a result, direct, pixel-level comparison between the NDVI image pixels and the ground data 

17 could not be compared.  This required alternative areas of a different land cover type to be used as 

18 a productivity proxy to compare with the traditional tree-ring data. 

19 To address this, we investigated whether we can establish a relationship of B. papyrifera 

20 and pixel-based NDVI signal during the peak growing season with a plot-based vegetation 
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1 in the adjacent community. If successful, this method can be then applied elsewhere to 

2 similar areas. The adjacent grasslands were partitioned into 8 plots (as shown in Fig. 7), 

3 across a series of management areas along the Niobrara Valley preserve for long-term 

4 monitoring. These plots included: rotational grazing (plots 1, 2, 3), patch-burn cattle 

5 grazing (plot 4), patch-burn cattle grazing, burned in 2015 (plot 5), unburned cattle 

6 grazing, control (plot 6), bison grazing, burned in 2015 (plot 7), and bison grazing, 

7 unburned (plot 8). In the patch-burn grazed areas, there were no fires in 2016, so the two 

8 grids in each site were in unburned (for at least several years) versus burned areas in 

9 2015.  The patch-burn cattle control site is unburned, but grazed season-long at the same 

10 stocking rate as the patch-burn cattle pasture. In the rotational grazing treatments, each 

11 pasture is grazed at a different time each year.

12 Each plot consisted of an 8 m x 6 m grid (8 east-west, 6 north- south) of GPS points 

13 encompassed in an area of 640 x 480 m2. At each GPS point, a 1 m2 quadrat was dropped 

14 and vegetation sampled. Canopy height, and percent cover of each vegetation functional 

15 group (grass, shrubs and forbs), as well as litter, standing dead and bare soil, were 

16 recorded. Topography and vegetation composition were considered in reference to pixel-
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1 based NDVI and tree ring growth correlation of B. papyrifera to identify potential areas of 

2 proxy monitoring based on their vegetation and/or topographical characteristics. We 

3 calculated the Pearson’s R2 value between averaged annual ring growth (raw, 

4 standardized, BAI,) and the annual representative NDVI values at each pixel location over 

5 the observed area. The R2 values were organized in a single raster representing the pixel-

6 level correlation to growth. 

7

8 3. Results

9 3.1. Site microclimate

10 Annual cumulative precipitation for the area during the study period of 1950 – 2014 

11 averaged 573±18 mm. During the 65-year study period, annual precipitation did not show 

12 any increasing or decreasing trend over time, instead precipitation varied annually around 

13 the mean (Fig. 2). The majority (80-90%) of the annual precipitation fell during the growing 

14 season between April and September (Fig. 3). Average annual streamflow ranged 

15 between 17 and 26.5 m3s-1 with a mean annual streamflow of 21.7±0.3 m3s-1 (Fig. 3). 

16 During the study period, average annual streamflow declined over time, which was 
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19

1 significant at P < 0.1. Streamflow increased in the spring with snow melt, and declined in 

2 July through September with decrease in precipitation and increase in temperature and 

3 evapotranspiration demands, before increasing again in October (Fig. 3). Annual Palmer 

4 Drought Severity Index (PDSI) ranged from -4.9 to 6.7, with a long-term average of 

5 0.9±0.3. During the study period, annual PDSI exhibited upward (wetting) trend, which 

6 was significant at P < 0.1 (P = 0.054) (Fig. 3). Despite this wetting trend, years of 

7 moderate to severe droughts were common and constituted around 32% of the 65-year 

8 period of study.

9 Average annual air temperature was 8.9±0.1 °C (Fig. 2), with January mean 

10 temperature ranging between -15.1 to 3.0 ºC, and showing a slight and statistically 

11 significant warming over time (P < 0.01). March maximum temperatures ranged between 

12 1.8 and 17.6ºC and displayed a significant decreasing trend (P = 0.048; Fig. S1). July 

13 maximum temperatures ranged between 24.4 and 37.4 ºC, and did not show an 

14 increasing or decreasing trend. July mean temperature met or exceeded 21 ºC nearly 

15 every year except for 1992 (Fig. S1). 

16

Page 19 of 46



20

1 3.2. Tree-ring chronologies 

2 Tree diameter was positively and significantly correlated with age (Fig. 4). Raw tree-ring 

3 widths averaged 1.21±0.02 mm yr-1, and basal area increment increase (BAI) averaged 

4 325.3±4.27 mm2 yr-1 (Fig. 5). Both raw tree-ring widths and BAI exhibited a significant 

5 decline in growth over time (P < 0.001). This decrease can be attributed to the normal 

6 growth behavior of B. papyrifera in general, as growth is rapid for the first 30 years or so 

7 and then sharply declines through maturity (Burns and Honkala 1990). Additionally, as a 

8 tree ages, cambial tissue must be distributed over a greater surface area, which results 

9 in narrower rings, i.e., the geometrical age effect (Sillett et al. 2015). Data standardization 

10 resulted in the removal of any significant trends (P = 0.74), and indicated variability around 

11 the mean (0.99±0.006 mm) which reflected inter- and intra-annual fluctuations in the 

12 abiotic environment (Fig. 5). A decline in tree-ring growth rate was observed in six periods, 

13 early 1960s, mid 1970s, late 1980s, early 1990s, early 2000s, and in 2012. These 

14 reductions in growth were associated with near zero or negative (drought) annual PDSI, 

15 or in years with lower than average air temperatures. Above average tree-ring widths, 
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1 standardized ring widths, and BAI were observed during wet years or positive PDSI (e.g., 

2 1983, 1995, and 2009). 

3

4 3.3. Climate correlations 

5 Previous and current year summer and fall streamflow were positively correlated with 

6 raw tree-ring widths, BAI, and standardized ring widths (Fig. 6). Generally, streamflow of 

7 previous July through fall of current year was significantly correlated with standardized 

8 tree-ring widths. High precipitation and streamflow rates during April of current and 

9 previous year seemed to have a negative effect on tree-ring growth. Increased air 

10 temperatures of both current and previous year were generally negatively correlated with 

11 all measured tree parameters, with few exceptions (Fig. 6). The strongest predictor for 

12 standardized tree ring width was PDSI, where values were significantly and positively 

13 correlated at P < 0.05 for both previous and current year. Linear mixed modeling (LMM) 

14 highlighted the importance of mid-season water availability of both previous and current 

15 year, early season temperature of the current year, and late-season temperature of both 

16 the previous and current year for tree-rings growth. 
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1

2 3.4. Comparison of climate correlation and LMM

3 The standardized ring-width model was the most relevant for our study. This model 

4 indicated only a negative influence of previous November precipitation on growth while 

5 the R2 showed significant positive correlation with previous October and December 

6 precipitation (Table S2). Pearson’s R2 correlations were significantly (P < 0.05) negative 

7 for previous January and positive for current June, October, and November. Standardized 

8 tree-ring widths indicated a disagreement where the model showed late previous season 

9 precipitation as negatively impacting growth while the Pearson R2 showed significant 

10 positive correlation to late season precipitation of both previous and current year. The 

11 LMM and climate correlations all considered virtually the same pool of variables yet 

12 produced slightly different results, while the overall results were similar. When using 

13 backwards selection, one must reconsider that variables can be dropped early in the 

14 model creation process which could later show significance. One must also consider the 

15 overall model as a whole and interpret its meaning within the ecological context of the 

16 data itself. 
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1 Temperature results from the LMM and Pearson R2 were in general agreement. 

2 Increasing temperature in previous April and June showed significant negative correlation 

3 to standardized ring growth. The findings portrayed from the LMMs and Pearson R2 

4 correlations were that increasing winter and spring temperatures are unfavorable for 

5 growth while increasing summer temperatures are favorable in the absence of drought. 

6

7 3.5. NDVI as a proxy for vegetation and B. papyrifera health 

8 Vegetation composition adjacent to B. paryrifera stands were sampled for both 

9 groundtruthing, and to identify the vegetation, topography and management practices that 

10 would provide the highest correlation with tree rings (Fig. 7). Sampled plots were 

11 dominated by grasses (31.9 to 49% cover) and averaged 37.6 ± 0.9%. Forbs percent 

12 cover ranged between 5.4 and 20.7%, and averaged 11.5 ± 0.5%. Shrub percent cover 

13 ranged between 6.2 and 27.4% and averaged 17.8 ± 1.1%. Litter percent cover ranged 

14 between 36.7 and 67.2% and averaged 52.4±1.5%. Litter composition was significantly 

15 lower in plot 4 (38.4%) and plot 7 (36.1%) relative to the others. Standing dead vegetation 

16 percent cover ranged averaged 6.2±0.5%. Bare ground percent cover ranged between 
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1 28.8 and 54.5% and averaged 41.8±1.5%. Bare ground cover was significantly high in 

2 plots 4 (54%), 5 (54%), and 7 (53%) relative to others. Canopy height ranged between 

3 26.9 and 41.6 cm and averaged 34.0±1.4 cm (Fig. 7).

4 Max-value Landsat 5 NDVI from all vegetation plots followed the standardized tree-rings 

5 growth trend of B. papyrifera (Fig. 8; Fig. S4). Average Pearson’s R2 correlation values 

6 ranged between 0.36 and 0.76. Plot-level correlation was highest in plot 2 for 

7 standardized ring width at 0.76, and lowest in plot 8 with 0.36. Regressing standardized 

8 ring widths as a function of  maximum NDVI derived from Landsat 5, showed the highest 

9 correlation with R2 of 0.81 (Fig. 9). A notable significant drop in Landsat max-value NDVI 

10 was observed in 2002. Climate records indicate this year as one of low precipitation, low 

11 streamflow, warm temperature, and drought, along with decreased ring growth from the 

12 collected B. papyrifera dendrochronological record. MODIS sum-NDVI for the periods of 

13 July, August, and August - October reflect the same notable drop in 2002 NDVI for all 8 

14 plot locations as seen in the Landsat 5 max-value NDVI (data not shown). 

15 The correlation rasters were made semi-transparent and overlain on a triangulated 

16 irregular networks (TIN, representative of the topographical characteristics of the land) 
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1 representation of topography, which allowed us to observe any relationship between 

2 topography and/or vegetation composition as characteristics for identifying other sites of 

3 comparative use. Based on R2 values and vegetation communities within the 8 sampled 

4 plots on the Nature Conservancy property, there was no obvious link between vegetation 

5 type and NDVI correlation to ring growth, as plots that contained significant differences of 

6 population composition typically showed a lower mean R2 value (e.g., Fig. S4). However, 

7 topography, similar to that of B. papyrifera, seemed to play a significant role in identifying 

8 the proxy; plots 2, 6, 5, and 3 are all located on rougher areas of the landscape with a 

9 greater variations in topographical relief and comprised the top half of mean R2 values of 

10 standardized ring width to pixel-level max-value Landsat NDVI. Plots 4, 7, 1, and 8 were 

11 located on flatter ground and comprised the bottom half of R2 values of standardized ring 

12 width to pixel-level max-value Landsat NDVI (Figs. S3 and S4). This observed 

13 topographical influence appeared to be unrelated to aspect or direction, rather better 

14 characterized by the land contour of the general area in question. MODIS sum-value 

15 NDVI showed the strongest relationships during July to both raw and standardized 

16 growth, and June-August to standardized growth, and there was a consistency of the 

Page 25 of 46



26

1 higher mean-correlated vegetation sampling plots and rough topography, which mostly 

2 agrees with the Landsat 5 TM max-value NDVI results at the plot level (correlations are 

3 not shown, Fig. S3).

4 Pixel-level correlation of raw tree ring-width and standardized tree-ring width between 

5 Landsat max-value NDVI and MODIS summed-value NDVI during the summer months 

6 showed very similar results when compared to topography and plot-level vegetation 

7 composition (Figs. S2 and S3).

8

9 4. Discussion

10 Annual average precipitation, temperature and summer (July) temperature have 

11 remained reasonably stable with no upward or downward trends over the study period. 

12 However, the area did experience a warming trend in January temperature over time (Fig. 

13 2). In northern latitudes, warming winter and spring trends can lead to increased ring 

14 growth and treeline advancement into neighboring tundra areas (Kharuk et al. 2014), as 

15 well as wider seasonal rings created as a result of earlier bud burst and increased cambial 

16 growth associated with longer growing season (Karlsson et al. 2004; Hollesen et al. 2015; 
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1 Yang et al. 2017). In this study, we show that warming January air temperatures had a 

2 negative effect on growth. This may be due to the higher January minimum temperatures 

3 in Nebraska relative to more northern latitudes causing the species to cross a threshold, 

4 and/or to re-freezing of the roots which can ultimately lead to reduction in growth, tree 

5 damage (Greenidge 1953; Redmond 1955), or in some cases death  (Pomerleau 1991). 

6 Water availability has also been shown to have a mixed effects on growth, its availability 

7 encourages establishment and growth of birch species (Li et al. 2016), while water excess 

8 (i.e., logging of soil) or drought have been shown to decrease leaf area of birch species 

9 (Wang et al. 2016). Such may be the case here as the standardized model highlights a 

10 negative growth effect from increased precipitation during previous November and current 

11 May, or late-previous and early-current season. The defoliation response to excess water 

12 may very well translate into problematic bud formation in previous season and bud-burst 

13 in the following spring. Standardized tree-ring widths followed PDSI very closely, which 

14 suggests that inter and intra-annual growth of B. papyrifera is strongly dependent on a 

15 combination of temperature and water availability, in that warm and wet conditions during 

16 the growing season facilitate more growth (Li et al. 2016). This can also be seen notably 
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1 by the rapid reductions in standardized ring width during years of low (dry) PDSI in the 

2 late 1980s to early 1990s and the early 2000’s versus an increase in standardized growth 

3 during years of high (wet) PDSI in the early 1980s, mid 1990s, and late 2000s, which 

4 agrees with other studies (Karlsson et al. 2004; Li et al. 2016). Drought extremes are 

5 expected to increase in frequency and duration for the future of the Great Plains (Bathke 

6 et al. 2014), which may impact the health and performance of this remnant forest. 

7 Climate correlations showed streamflow from April through November of both previous 

8 and current year to be significantly and positively related to growth, agreeing with 

9 inclusion of August streamflow of both current and previous year, but disagreeing with the 

10 negative influence of July streamflow to raw growth and BAI as displayed by the selected 

11 models (Table S2). This influence of streamflow on growth might be explained by some 

12 of the unique geology of the Niobrara River Valley in that the river water, which flows 

13 directly over bedrock, is fed by lateral (easterly) movement of groundwater (Szilagyi et al. 

14 2002). We observed B. papyrifera only growing in close proximity to the water’s edge in 

15 small pockets (Table S1). Combining the shallow fibrous root system of paper birch, and 

16 the influence of drought-related conditions on growth, close proximity of this species to 
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1 the water table, and access to precipitation water or streamflow are necessary for its 

2 success. 

3 NDVI derived from satellite imagery via both Landsat 5 TM and MODIS satellites 

4 showed potential use as a proxy for ex-situ B. papyrifera growth monitoring through high 

5 Pearson’s R2 values between ring growth and NDVI at the pixel level. Based on R2 values 

6 and vegetation communities within the 8 sampled plots, there was no obvious link 

7 between vegetation type and NDVI correlation to tree-ring growth. However, vegetation 

8 on topography, similar to that of B. papyrifera, played a significant role in identifying the 

9 proxy. Other studies have linked satellite NDVI to climate variables such as temperature, 

10 precipitation, and drought conditions (Baird et al. 2012; Gensuo and Epstein 2003), and 

11 tree-ring width to NDVI with mixed success (Coops et al. 1999; Forbes et al. 2010; 

12 Vincente-Serrano et al. 2016). For example, Bhuyan et al. (2017) noted a positive 

13 relationship between NDVI and tree rings in many forests in the Northern Hemisphere, 

14 however the strength of this relationship depended on spatial scale, forest type (e.g., 

15 better correlation of NDVI with tree rings of conifers than deciduous species), species 

16 phenology, climatic zones, and method of combining NDVI for analysis.  Liang et al. 
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1 (2005) reported strong relationship between grasslands NDVI and Picea meyeri in the 

2 semi-arid region of northern China. They argued that in semi-arid regions, such 

3 relationship can be expected as both vegetation types are limited by seasonal 

4 precipitation. Similarly in this study, where water is a limiting factor, we found that using 

5 NDVI of adjacent pasture lands with similar topographical characteristics to that of B. 

6 papyrifera’s can provide a reliable representation of tree performance. 

7

8 5. Conclusion

9 Dendrochronological techniques were used to identify microclimatic drivers of B. 

10 papyrifera growth of the Niobrara River Valley. We found that intra- and inter-annual 

11 average and pattern of precipitation, temperature, streamflow and PDSI to be important 

12 for growth. Climate correlations and LMM analyses produced similar results with some 

13 disagreements, but with both methods agreeing that the strongest predictor for 

14 standardized tree-rings was the Palmer Drought Severity Index, suggesting that B. 

15 papyrifera is highly responsive to a combination of temperature and water.  Increasing 

16 winter and spring temperatures were unfavorable for tree growth while increasing summer 

Page 30 of 46



31

1 temperatures were favorable in the absence of drought. Drought is expected to increase 

2 in frequency and duration for the future of the Great Plains (Bathke et al. 2014). Warming 

3 conditions are also expected in the northern latitudes (Soja et al. 2007), and have been 

4 shown to impact riparian ecosystems leading to decreased biomass of riparian species 

5 and overall species richness and diversity. Riparian communities that depend on 

6 groundwater are predicted to be replaced with more water-competitive upland 

7 communities (Strom et al 2011). Combining the shallow fibrous root system of B. 

8 papyrifera, and the influence of drought-related conditions on growth, the future of 

9 Niobrara River Valley B. papyrifera will be dependent on climate and water availability at 

10 key points during the growing season. Factors such as water pumping for irrigation 

11 purposes on upland sites, and expansion of woody species especially the encroachment 

12 of Juniperus virginiana (Awada et al. 2013) will affect the horizontal movement of water 

13 over bedrock and impact water availability for B. papyrifera, and should therefore be 

14 monitored.

15 High NDVI values derived from satellites images of adjacent grasslands correlated with B. 

16 papyrifera, indicating that vegetation that shares the same topographic relief is governed by similar 
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1 environmental constraints in semi-arid areas (i.e., water), and can be used as a proxy to monitor a 

2 sparsely populated and/or remote species growth ex-situ.  Results from this study can aid 

3 in forecasting the dynamics and thresholds of this species in the face of climate change 

4 in both the remnant populations and across its current distribution in northern latitudes of 

5 North America.

6
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1 Figures Caption:
2

3 Figure 1. Location of the study area along the Niobrara River Valley in north-central 
4 Nebraska, USA. Locations of the examined Betula papyrifera stands are marked with 
5 black dots. 
6

7 Figure 2. Annual precipitation, average air temperature, streamflow, and Palmer Drought 
8 Severity Index (PDSI) for the study area along the Niobrara River Valley in north-central 
9 Nebraska. Dashed lines describe the parameter trend over time.  

10

11 Figure 3. Long-term average monthly streamflow of the Niobrara River (m3s-1), air 
12 temperature (C), and precipitation (mm) between 1950 and 2014.
13

14 Figure 4. Diameter at breast height (DBH) as a function of age of B. papyrifera trees.
15

16 Figure 5. Average annual (A) raw tree ring width (mm), (B) basal area increment increase 
17 (mm2), and (C) standardized ring width (mm) of B. papyrifera along the Niobrara River 
18 Valley between 1950 and 2014. 
19

20 Figure 6. Pearson R2 correlation of tree ring width (Raw), basal area increment increase 
21 (BAI) and standardized tree ring growth (Std) of B. papyrifera, as a function of previous 
22 and current year precipitation, streamflow, temperature, and PDSI, along the Niobrara 
23 River Valley, NE between 1950 and 2014. * = significance at P < 0.1, and ** = significance 
24 at the P < 0.05.
25

26 Figure 7. Vegetation sampled from 8 plots located across a series of management 
27 treatments on the Niobrara Valley Preserve, The Nature Conservancy on June 27, 2016. 
28 Each plot consists of an 8 x 6 grid (8 east - west, 6 north - south) of GPS points 
29 encompassed in a 640m x 480m area. The bar-plot on the left shows percent cover of 
30 litter, standing dead vegetation, grass, forbs, and bare soil. Map on the right shows the 
31 location of the plots relative to sampled trees (white dots).
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1

2 Figure 8. Average standardized growth of B. papyifera and max-value Landsat-5 NDVI 
3 between 1985 and 2011 within the 8 640m x 480m vegetation composition plots sampled 
4 in June, 2016 by the Nature Conservancy at the Niobrara Valley Preserve in Nebraska. 
5

6 Figure 9. Standardized ring width of B. papyrifera as a function of maximum Landsat-5 
7 NDVI observed in adjacent plots in Niobrara River Valley between 1985-2011. Missing 
8 points are due to cloud cover.
9

10
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Figure 3. Long-term average monthly streamflow of the Niobrara River (m3s-1), air temperature (C), and 
precipitation (mm) between 1950 and 2014. 
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Figure 4. Diameter at breast height (DBH) as a function of age of B. papyrifera trees. 
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Figure 5. Average annual (A) raw tree ring width (mm), (B) basal area increment increase (mm2), and (C) 
standardized ring width (mm) of B. papyrifera along the Niobrara River Valley between 1950 and 2014. 
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Figure 7. Vegetation sampled from 8 plots located across a series of management treatments on the 
Niobrara Valley Preserve, The Nature Conservancy on June 27, 2016. Each plot consists of an 8 x 6 grid (8 
east - west, 6 north - south) of GPS points encompassed in a 640m x 480m area. The bar-plot on the left 

shows percent cover of litter, standing dead vegetation, grass, forbs, and bare soil. Map on the right shows 
the location of the plots relative to sampled trees (white dots). 
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Figure 8. Average standardized growth of B. papyifera and max-value Landsat-5 NDVI between 1985 and 
2011 within the 8 640m x 480m vegetation composition plots sampled in June, 2016 by the Nature 

Conservancy at the Niobrara Valley Preserve in Nebraska. 

253x138mm (300 x 300 DPI) 

Page 45 of 46



 

Figure 9. Standardized ring width of B. papyrifera as a function of maximum Landsat-5 NDVI observed in 
adjacent plots in Niobrara River Valley between 1985-2011. Missing points are due to cloud cover. 
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