448 research outputs found

    Chemistry of a newly detected circumbinary disk in Ophiuchus

    Get PDF
    (Abridged) Astronomers recently started discovering exoplanets around binary systems. Therefore, understanding the formation and evolution of circumbinary disks is crucial for a complete scenario of planet formation. The aim of this paper is to present the detection of a circumbinary disk around Oph-IRS67 and analyse its structure. We present high-angular-resolution (0.4", 60 AU) observations of C17O, H13CO+ , C34S, SO2, C2H and c-C3H2 molecular transitions with ALMA at 0.8 mm. The spectrally and spatially resolved maps reveal the kinematics of the circumbinary disk as well as its chemistry. Molecular abundances are estimated using RADEX. The continuum emission reveals the presence of a circumbinary disk around the two sources. This disk has a diameter of ~620 AU and is well traced by C17O and H13CO+ emission. C2H and c-C3H2 trace a higher-density region which is spatially offset from the sources (~430 AU). Finally, SO2 shows compact emission around one of the sources, Oph-IRS67 B. The molecular transitions which trace the circumbinary disk are consistent with a Keplerian profile on disk scales (< 200 AU) and an infalling profile for envelope scales (> 200 AU). The Keplerian fit leads to a mass of 2.2 Msun. Inferred CO abundances w.r.t. H2 are comparable to the canonical ISM value of 2.7e-4. This study proves the first detection of the circumbinary disk associated with Oph-IRS67. The disk is chemically differentiated from the nearby high-density region. The lack of methanol emission suggests the extended disk dominates the mass budget in the inner- most regions of the protostellar envelope, generating a flat density profile where less material is exposed to high temperatures. Thus, complex organic molecules would be associated with lower column densities. Finally, Oph-IRS67 is a promising candidate for the detection of both circumstellar disks with higher-angular-resolution observations.Comment: 19 pages, 14 figures, 6 table

    A deeply embedded young protoplanetary disk around L1489 IRS observed by the submillimeter array

    Full text link
    Circumstellar disks are expected to form early in the process that leads to the formation of a young star, during the collapse of the dense molecular cloud core. It is currently not well understood at what stage of the collapse the disk is formed or how it subsequently evolves. We aim to identify whether an embedded Keplerian protoplanetary disk resides in the L1489 IRS system. Given the amount of envelope material still present, such a disk would respresent a very young example of a protoplanetary disk. Using the Submillimeter Array (SMA) we have observed the HCO+^+ J=J= 3--2 line with a resolution of about 1''. At this resolution a protoplanetary disk with a radius of a few hundred AUs should be detectable, if present. Radiative transfer tools are used to model the emission from both continuum and line data. We find that these data are consistent with theoretical models of a collapsing envelope and Keplerian circumstellar disk. Models reproducing both the SED and the interferometric continuum observations reveal that the disk is inclined by 40^\circ which is significantly different to the surrounding envelope (74^\circ). This misalignment of the angular momentum axes may be caused by a gradient within the angular momentum in the parental cloud or if L1489 IRS is a binary system rather than just a single star. In the latter case, future observations looking for variability at sub-arcsecond scales may be able to constrain these dynamical variations directly. However, if stars form from turbulent cores, the accreting material will not have a constant angular momentum axis (although the average is well defined and conserved) in which case it is more likely to have a misalignment of the angular momentum axes of the disk and the envelope.Comment: 11 pages, 13 figures, accepted by A&

    A recent accretion burst in the low-mass protostar IRAS 15398-3359: ALMA imaging of its related chemistry

    Full text link
    Low-mass protostars have been suggested to show highly variable accretion rates through-out their evolution. Such changes in accretion, and related heating of their ambient envelopes, may trigger significant chemical variations on different spatial scales and from source-to-source. We present images of emission from C17O, H13CO+, CH3OH, C34S and C2H toward the low-mass protostar IRAS 15398-3359 on 0.5" (75 AU diameter) scales with the Atacama Large Millimeter/submillimeter Array (ALMA) at 340 GHz. The resolved images show that the emission from H13CO+ is only present in a ring-like structure with a radius of about 1-1.5" (150-200 AU) whereas the CO and other high dipole moment molecules are centrally condensed toward the location of the central protostar. We propose that HCO+ is destroyed by water vapor present on small scales. The origin of this water vapor is likely an accretion burst during the last 100-1000 years increasing the luminosity of IRAS 15398-3359 by a factor of 100 above its current luminosity. Such a burst in luminosity can also explain the centrally condensed CH3OH and extended warm carbon-chain chemistry observed in this source and furthermore be reflected in the relative faintness of its compact continuum emission compared to other protostars.Comment: Accepted for publication in ApJ Letters; 14 pages, 5 figure

    Descriptive analysis of preschool physical activity and sedentary behaviors - a cross sectional study of 3-year-olds nested in the SKOT cohort

    Get PDF
    Abstract Background Further collection of surveillance data is warranted, particularly in preschool populations, for optimizing future public health promotion strategies. This study aims to describe physical activity (PA) and sedentary behavior (SB) across different settings, including time in and out of daycare, and to determine the proportion of children complying with suggested PA recommendations in a high income country. Methods Valid PA was assessed in 231 children (36.4 ± 1.1 months) with the Actigraph GT3X accelerometer, and information regarding date and time of dropping-off/picking-up children in daycare was provided by parents. Mean total PA (i.e., counts per minute (CPM)), moderate-to-vigorous physical activity (MVPA), SB time, and non-SB time was generated and compared across settings. Post hoc, PA and SB were examined in subgroups of low-active (1st quartile) and high-active (4th quartile) children. Results Overall, boys and girls spent 1.4 ± 0.3 h/day and 1.2 ± 0.4 h/day in MVPA, respectively. Likewise, boys and girls accumulated 6.7 ± 0.8 h and 6.8 ± 0.9 h of SB time per day, respectively. Higher PA levels consistently co-occurred with lower SB time in the daycare setting. Girls accumulated less SB time in daycare than before and after daycare (β = −12.2%, p < 0.001 & β = −3.8%, p < 0.001, respectively). In boys, daycare-days contained more PA and less SB than non-daycare-days (CPM: β =29, p = 0.046, %MVPA: β = 0.83, p = 0.007, %SB: β = −2.3, p < 0.001, respectively). All children fulfilled recommendations of at least 3 h of daily non-SB. Eighty-nine percent of boys and 72% of girls met the daily 1-h MVPA recommendation for 5 year-olds. Lower proportions of children, especially boys, fulfilled MVPA recommendation on days with no daycare attendance. Generally, large mean differences in MVPA and SB were observed across all settings between the most active and the least active children, and only 7% of the low-active girls and 59% of the low-active boys fulfilled MVPA recommendations. Conclusions Overall, the majority of children fulfilled MVPA guidelines for 5 year-olds, and all children complied with suggested recommendations of 180 min of daily activity. Daycare time was found to represent an important setting for PA. Substantial and consistent differences observed in the amount of time spent physically active between high- and low-active children across all settings indicate substantial variations in young children’s PA levels irrespective of the context

    Determining the Parameters of Massive Protostellar Clouds via Radiative Transfer Modeling

    Full text link
    A one-dimensional method for reconstructing the structure of prestellar and protostellar clouds is presented. The method is based on radiative transfer computations and a comparison of theoretical and observed intensity distributions at both millimeter and infrared wavelengths. The radiative transfer of dust emission is modeled for specified parameters of the density distribution, central star, and external background, and the theoretical distribution of the dust temperature inside the cloud is determined. The intensity distributions at millimeter and IR wavelengths are computed and quantitatively compared with observational data. The best-fit model parameters are determined using a genetic minimization algorithm, which makes it possible to reveal the ranges of parameter degeneracy as well. The method is illustrated by modeling the structure of the two infrared dark clouds IRDC-320.27+029 (P2) and IRDC-321.73+005 (P2). The derived density and temperature distributions can be used to model the chemical structure and spectral maps in molecular lines.Comment: Accepted for publication in Astronomy Report

    Optimized barley phytase gene expression by focused FIND-IT screening for mutations in cis-acting regulatory elements

    Get PDF
    Introduction: Induced modification of plant gene expression is of both fundamental and applied importance. Cis-acting regulatory elements (CREs) are major determinants of the spatiotemporal strength of gene expression. Yet, there are few examples where induced genetic variation in predetermined CREs has been exploited to improve or investigate crop plants. Methods: The digital PCR based FIND-IT technology was applied to discover barley mutants with CRE variants in the promoter of the nutritional important barley grain phytase (PAPhy_a) gene. Results and discussion: Mutants with higher or lower gene expression and ultimately higher or lower mature grain phytase activity (MGPA), respectively, were discovered. Field trials and inositol phosphate profiling during germination showed that PAPhy_a does not influence agronomic performance under the trial conditions but it does shorten the lag time of phosphate mobilization during germination. Higher endogenous MGPA is an improvement of grain quality for feed use as it improves the phosphate bioavailability for monogastric animals. Moreover, as the targeted CRE motifs of the PAPhy_a promoter are shared with a range of seed expressed genes like key cereal and legume storage genes, the current results demonstrates a concept for modulating individual gene expression levels of a range of seed genes

    Molecular line survey of the high-mass star-forming region NGC 6334I with Herschel/HIFI and the SMA

    Get PDF
    We aim at deriving the molecular abundances and temperatures of the hot molecular cores in the high-mass star-forming region NGC 6334I and consequently deriving their physical and astrochemical conditions. In the framework of the Herschel guaranteed time key program CHESS, NGC 6334I is investigated by using HIFI aboard the Herschel Space Observatory. A spectral line survey is carried out in the frequency range 480-1907 GHz, and auxiliary interferometric data from the SMA in the 230 GHz band provide spatial information for disentangling the different physical components contributing to the HIFI spectrum. The spectral lines are identified with the aid of former surveys and spectral line catalogs. The observed spectrum is then compared to a simulated synthetic spectrum with XCLASS, assuming local thermal equilibrium, and best fit parameters are derived using the model optimization package MAGIX. A total of 46 molecules are identified, with 31 isotopologues, resulting in about 4300 emission and absorption lines. High- energy levels of the dominant emitter methanol and vibrationally excited HCN are detected. The number of unidentified lines remains low with 75, or less than 2 percent of the lines detected. The modeling suggests that several spectral features need two or more components to be fitted properly. Other components could be assigned to cold foreground clouds or to outflows, most visible in the SiO emission. A chemical variation between the two embedded hot cores is found, with more N-bearing molecules identified in SMA1 and O-bearing molecules in SMA2. Spectral line surveys give powerful insights into the study of the interstellar medium. Different molecules trace different physical conditions like the inner hot core, the envelope, the outflows or the cold foreground clouds. The derived molecular abundances provide further constraints for astrochemical models.Comment: 30 pages including appendix, 49 figures, accepted for publication in Astronomy and Astrophysic

    First detection of gas-phase ammonia in a planet-forming disk NH_3, N_2H^+, and H_2O in the disk around TW Hydrae

    Get PDF
    Context. Nitrogen chemistry in protoplanetary disks and the freeze-out on dust particles is key for understanding the formation of nitrogen-bearing species in early solar system analogs. In dense cores, 10% to 20% of the nitrogen reservoir is locked up in ices such as NH_3, NH_4^+ and OCN^−. So far, ammonia has not been detected beyond the snowline in protoplanetary disks. Aims. We aim to find gas-phase ammonia in a protoplanetary disk and characterize its abundance with respect to water vapor. Methods. Using HIFI on the Herschel Space Observatory, we detected for the first time the ground-state rotational emission of ortho-NH_3 in a protoplanetary disk around TW Hya. We used detailed models of the disk’s physical structure and the chemistry of ammonia and water to infer the amounts of gas-phase molecules of these species. We explored two radial distributions (extended across the disk and confined to <60 au like the millimeter-sized grains) and two vertical distributions (near the midplane and at intermediate heights above the midplane, where water is expected to photodesorb off icy grains) to describe the (unknown) location of the molecules. These distributions capture the effects of radial drift and vertical settling of ice-covered grains. Results. The NH_31_0–0_0 line is detected simultaneously with H_2O 1_(10)–1_(01) at an antenna temperature of 15.3 mK in the Herschel beam; the same spectrum also contains the N_2H^+ 6–5 line with a strength of 18.1 mK. We use physical-chemical models to reproduce the fluxes and assume that water and ammonia are cospatial. We infer ammonia gas-phase masses of 0.7−11.0 × 10^(21) g, depending on the adopted spatial distribution, in line with previous literature estimates. For water, we infer gas-phase masses of 0.2−16.0 × 10^(22) g, improving upon earlier literature estimates This corresponds to NH_3/H_2O abundance ratios of 7%−84%, assuming that water and ammonia are co-located. The inferred N_2H^+ gas mass of 4.9 × 10^(21) g agrees well with earlier literature estimates that were based on lower excitation transitions. These masses correspond to a disk-averaged abundances of 0.2−17.0 × 10^(-11), 0.1−9.0 × 10^(-10) and 7.6 × 10^(-11) for NH_3, H_2O and N_2H^+ respectively. Conclusions. Only in the most compact and settled adopted configuration is the inferred NH_3/H_2O consistent with interstellar ices and solar system bodies of ~5%–10%; all other spatial distributions require additional gas-phase NH_3 production mechanisms. Volatile release in the midplane may occur through collisions between icy bodies if the available surface for subsequent freeze-out is significantly reduced, for instance, through growth of small grains into pebbles or larger bodies

    Sensitive limits on the abundance of cold water vapor in the DM Tau protoplanetary disk

    Get PDF
    We performed a sensitive search for the ground-state emission lines of ortho- and para-water vapor in the DM Tau protoplanetary disk using the Herschel/HIFI instrument. No strong lines are detected down to 3sigma levels in 0.5 km/s channels of 4.2 mK for the 1_{10}--1_{01} line and 12.6 mK for the 1_{11}--0_{00} line. We report a very tentative detection, however, of the 1_{10}--1_{01} line in the Wide Band Spectrometer, with a strength of T_{mb}=2.7 mK, a width of 5.6 km/s and an integrated intensity of 16.0 mK km/s. The latter constitutes a 6sigma detection. Regardless of the reality of this tentative detection, model calculations indicate that our sensitive limits on the line strengths preclude efficient desorption of water in the UV illuminated regions of the disk. We hypothesize that more than 95-99% of the water ice is locked up in coagulated grains that have settled to the midplane.Comment: 5 pages, 3 figures. Accepted for publication in the Herschel HIFI special issue of A&
    corecore