494 research outputs found

    Draft Genome Sequence of the Phenazine-Producing \u3ci\u3ePseudomonas fluorescens\u3c/i\u3e Strain 2-79

    Get PDF
    Pseudomonas fluorescens strain 2-79, a natural isolate of the rhizosphere of wheat (Triticum aestivum L.), possesses antagonistic potential toward several fungal pathogens. We report the draft genome sequnce of strain 2-79, which comprises 5,674 protein-coding sequences

    Inhibition of 26S proteasome activity by α-synuclein is mediated by the proteasomal chaperone Rpn14/PAAF1

    Get PDF
    \ua9 2024 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.Parkinson\u27s disease (PD) is characterized by aggregation of α-synuclein (α-syn) into protein inclusions in degenerating brains. Increasing amounts of aggregated α-syn species indicate significant perturbation of cellular proteostasis. Altered proteostasis depends on α-syn protein levels and the impact of α-syn on other components of the proteostasis network. Budding yeast Saccharomyces cerevisiae was used as eukaryotic reference organism to study the consequences of α-syn expression on protein dynamics. To address this, we investigated the impact of overexpression of α-syn and S129A variant on the abundance and stability of most yeast proteins using a genome-wide yeast library and a tandem fluorescent protein timer (tFT) reporter as a measure for protein stability. This revealed that the stability of in total 377 cellular proteins was altered by α-syn expression, and that the impact on protein stability was significantly enhanced by phosphorylation at Ser129 (pS129). The proteasome assembly chaperone Rpn14 was identified as one of the top candidates for increased protein stability by expression of pS129 α-syn. Elevated levels of Rpn14 enhanced the growth inhibition by α-syn and the accumulation of ubiquitin conjugates in the cell. We found that Rpn14 interacts physically with α-syn and stabilizes pS129 α-syn. The expression of α-syn along with elevated levels of Rpn14 or its human counterpart PAAF1 reduced the proteasome activity in yeast and in human cells, supporting that pS129 α-syn negatively affects the 26S proteasome through Rpn14. This comprehensive study into the alternations of protein homeostasis highlights the critical role of the Rpn14/PAAF1 in α-syn-mediated proteasome dysfunction

    Silencing of Vlaro2 for chorismate synthase revealed that the phytopathogen Verticillium longisporum induces the cross-pathway control in the xylem

    Get PDF
    The first leaky auxotrophic mutant for aromatic amino acids of the near-diploid fungal plant pathogen Verticillium longisporum (VL) has been generated. VL enters its host Brassica napus through the roots and colonizes the xylem vessels. The xylem contains little nutrients including low concentrations of amino acids. We isolated the gene Vlaro2 encoding chorismate synthase by complementation of the corresponding yeast mutant strain. Chorismate synthase produces the first branch point intermediate of aromatic amino acid biosynthesis. A novel RNA-mediated gene silencing method reduced gene expression of both isogenes by 80% and resulted in a bradytrophic mutant, which is a leaky auxotroph due to impaired expression of chorismate synthase. In contrast to the wild type, silencing resulted in increased expression of the cross-pathway regulatory gene VlcpcA (similar to cpcA/GCN4) during saprotrophic life. The mutant fungus is still able to infect the host plant B. napus and the model Arabidopsis thaliana with reduced efficiency. VlcpcA expression is increased in planta in the mutant and the wild-type fungus. We assume that xylem colonization requires induction of the cross-pathway control, presumably because the fungus has to overcome imbalanced amino acid supply in the xylem

    Current challenges of research on filamentous fungi in relation to human welfare and a sustainable bio-economy: a white paper.

    Get PDF
    The EUROFUNG network is a virtual centre of multidisciplinary expertise in the field of fungal biotechnology. The first academic-industry Think Tank was hosted by EUROFUNG to summarise the state of the art and future challenges in fungal biology and biotechnology in the coming decade. Currently, fungal cell factories are important for bulk manufacturing of organic acids, proteins, enzymes, secondary metabolites and active pharmaceutical ingredients in white and red biotechnology. In contrast, fungal pathogens of humans kill more people than malaria or tuberculosis. Fungi are significantly impacting on global food security, damaging global crop production, causing disease in domesticated animals, and spoiling an estimated 10 % of harvested crops. A number of challenges now need to be addressed to improve our strategies to control fungal pathogenicity and to optimise the use of fungi as sources for novel compounds and as cell factories for large scale manufacture of bio-based products. This white paper reports on the discussions of the Think Tank meeting and the suggestions made for moving fungal bio(techno)logy forward

    Functional Magnetic Resonance Imaging of Motor Cortex Activation in Schizophrenia

    Get PDF
    Previous fMRI studies of sensorimotor activation in schizophrenia have found in some cases hypoactivity, no difference, or hyperactivity when comparing patients with controls; similar disagreement exists in studies of motor laterality. In this multi-site fMRI study of a sensorimotor task in individuals with chronic schizophrenia and matched healthy controls, subjects responded with a right-handed finger press to an irregularly flashing visual checker board. The analysis includes eighty-five subjects with schizophrenia diagnosed according to the DSM-IV criteria and eighty-six healthy volunteer subjects. Voxel-wise statistical parametric maps were generated for each subject and analyzed for group differences; the percent Blood Oxygenation Level Dependent (BOLD) signal changes were also calculated over predefined anatomical regions of the primary sensory, motor, and visual cortex. Both healthy controls and subjects with schizophrenia showed strongly lateralized activation in the precentral gyrus, inferior frontal gyrus, and inferior parietal lobule, and strong activations in the visual cortex. There were no significant differences between subjects with schizophrenia and controls in this multi-site fMRI study. Furthermore, there was no significant difference in laterality found between healthy controls and schizophrenic subjects. This study can serve as a baseline measurement of schizophrenic dysfunction in other cognitive processes

    Dynamics of Prolyl hydroxylases levels during disease progression in experimental colitis

    Get PDF
    Hypoxia inducible factor (HIF)-prolyl hydroxylase (PHD) inhibitors are shown to be protective in several models of inflammatory bowel disease (IBD). However, these non-selective inhibitors are known to inhibit all the three isoforms of PHD, i.e. PHD-1, PHD-2 and PHD-3. In the present report, we investigated the associated changes in levels of PHDs during the development and recovery of chemically induced colitis in mice. The results indicated that in the experimental model of murine colitis, levels of both, PHD-1 and PHD-2 were found to be increased with the progression of the disease; however, the level of PHD-3 remained the same in group of healthy controls and mice with colitis. Thus, the findings advocated that inhibitors, which inhibited all three isoforms of PHD could not be ideal therapeutics for IBD since PHD-3 is required for normal gut function. Hence, this necessitates the development of new compounds capable of selectively inhibiting PHD-1 and PHD-2 for effective treatment of IBD

    Prefrontal response and frontostriatal functional connectivity to monetary reward in abstinent alcohol-dependent young adults

    Get PDF
    Although altered function in neural reward circuitry is widely proposed in models of addiction, more recent conceptual views have emphasized the role of disrupted response in prefrontal regions. Changes in regions such as the orbitofrontal cortex, medial prefrontal cortex, and dorsolateral prefrontal cortex are postulated to contribute to the compulsivity, impulsivity, and altered executive function that are central to addiction. In addition, few studies have examined function in these regions during young adulthood, when exposure is less chronic than in typical samples of alcohol-dependent adults. To address these issues, we examined neural response and functional connectivity during monetary reward in 24 adults with alcohol dependence and 24 psychiatrically healthy adults. Adults with alcohol dependence exhibited less response to the receipt of monetary reward in a set of prefrontal regions including the medial prefrontal cortex, lateral orbitofrontal cortex, and dorsolateral prefrontal cortex. Adults with alcohol dependence also exhibited greater negative correlation between function in each of these regions and that in the nucleus accumbens. Within the alcohol-dependent group, those with family history of alcohol dependence exhibited lower mPFC response, and those with more frequent drinking exhibited greater negative functional connectivity between the mPFC and the nucleus accumbens. These findings indicate that alcohol dependence is associated with less engagement of prefrontal cortical regions, suggesting weak or disrupted regulation of ventral striatal response. This pattern of prefrontal response and frontostriatal connectivity has consequences for the behavior patterns typical of addiction. Furthermore, brain-behavior findings indicate that the potential mechanisms of disruption in frontostriatal circuitry in alcohol dependence include family liability to alcohol use problems and more frequent use of alcohol. In all, these findings build on the extant literature on reward-circuit function in addiction and suggest mechanisms for disrupted function in alcohol dependence. © 2014 Forbes et al

    Analysis of Hypoxia and Hypoxia-Like States through Metabolite Profiling

    Get PDF
    In diverse organisms, adaptation to low oxygen (hypoxia) is mediated through complex gene expression changes that can, in part, be mimicked by exposure to metals such as cobalt. Although much is known about the transcriptional response to hypoxia and cobalt, little is known about the all-important cell metabolism effects that trigger these responses.Herein we use a low molecular weight metabolome profiling approach to identify classes of metabolites in yeast cells that are altered as a consequence of hypoxia or cobalt exposures. Key findings on metabolites were followed-up by measuring expression of relevant proteins and enzyme activities. We find that both hypoxia and cobalt result in a loss of essential sterols and unsaturated fatty acids, but the basis for these changes are disparate. While hypoxia can affect a variety of enzymatic steps requiring oxygen and heme, cobalt specifically interferes with diiron-oxo enzymatic steps for sterol synthesis and fatty acid desaturation. In addition to diiron-oxo enzymes, cobalt but not hypoxia results in loss of labile 4Fe-4S dehydratases in the mitochondria, but has no effect on homologous 4Fe-4S dehydratases in the cytosol. Most striking, hypoxia but not cobalt affected cellular pools of amino acids. Amino acids such as aromatics were elevated whereas leucine and methionine, essential to the strain used here, dramatically decreased due to hypoxia induced down-regulation of amino acid permeases.These studies underscore the notion that cobalt targets a specific class of iron proteins and provide the first evidence for hypoxia effects on amino acid regulation. This research illustrates the power of metabolite profiling for uncovering new adaptations to environmental stress

    Rationale and design of the randomised clinical trial comparing early medication change (EMC) strategy with treatment as usual (TAU) in patients with Major Depressive Disorder - the EMC trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Major Depressive Disorder (MDD), the traditional belief of a delayed onset of antidepressants' effects has lead to the concept of current guidelines that treatment durations should be between 3-8 weeks before medication change in case of insufficient outcome. Post hoc analyses of clinical trials, however, have shown that improvement usually occurs within the first 10-14 days of treatment and that such early improvement (Hamilton Depression Rating Scale [HAMD] decrease ≥20%) has a substantial predictive value for final treatment outcome. Even more important, non-improvement (HAMD decrease <20%) after 14 days of treatment was found to be highly predictive for a poor final treatment outcome.</p> <p>Methods/Design</p> <p>The EMC trial is a phase IV, multi-centre, multi-step, randomized, observer-blinded, actively controlled parallel-group clinical trial to investigate for the first time prospectively, whether non-improvers after 14 days of antidepressant treatment with an early medication change (EMC) are more likely to attain remission (HAMD-17 ≤7) on treatment day 56 compared to patients treated according to current guideline recommendation (treatment as usual; TAU). In level 1 of the EMC trial, non-improvers after 14 days of antidepressant treatment will be randomised to an EMC strategy or TAU. The EMC strategy for this study schedules a first medication change on day 15; in case of non-improvement between days 15-28, a second medication change will be performed. TAU schedules the first medication change after 28 days in case of non-response (HAMD-17 decrease <50%). Both interventions will last 42 days. In levels 2 and 3, EMC strategies will be compared with TAU strategies in improvers on day 14, who experience a stagnation of improvement during the course of treatment. The trial is supported by the German Federal Ministry of Education and Research (BMBF) and will be conducted in cooperation with the BMBF funded Interdisciplinary Centre Clinical Trials (IZKS) at the University Medical Centre Mainz and at six clinical trial sites in Germany.</p> <p>Discussion</p> <p>If the EMC strategies lead to significantly more remitters, changes of clinical practice, guidelines for the treatment of MDD as well as research settings can be expected.</p> <p>Trial Registration</p> <p><b>Clincaltrials.gov Identifier</b>: NCT00974155; <b>EudraCT</b>: 2008-008280-96.</p

    Development and Evolution of the Muscles of the Pelvic Fin

    Get PDF
    Locomotor strategies in terrestrial tetrapods have evolved from the utilisation of sinusoidal contractions of axial musculature, evident in ancestral fish species, to the reliance on powerful and complex limb muscles to provide propulsive force. Within tetrapods, a hindlimb-dominant locomotor strategy predominates, and its evolution is considered critical for the evident success of the tetrapod transition onto land. Here, we determine the developmental mechanisms of pelvic fin muscle formation in living fish species at critical points within the vertebrate phylogeny and reveal a stepwise modification from a primitive to a more derived mode of pelvic fin muscle formation. A distinct process generates pelvic fin muscle in bony fishes that incorporates both primitive and derived characteristics of vertebrate appendicular muscle formation. We propose that the adoption of the fully derived mode of hindlimb muscle formation from this bimodal character state is an evolutionary innovation that was critical to the success of the tetrapod transition
    corecore