390 research outputs found

    Modeling Northern Hemisphere ice-sheet distribution during MIS 5 and MIS 7 glacial inceptions

    Get PDF
    The present manuscript compares Marine Iso- tope Stage 5 (MIS 5, 125–115 kyr BP) and MIS 7 (236– 229 kyr BP) with the aim to investigate the origin of the difference in ice-sheet growth over the Northern Hemi- sphere high latitudes between these last two inceptions. Our approach combines a low resolution coupled atmosphere– ocean–sea-ice general circulation model and a 3-D thermo- mechanical ice-sheet model to simulate the state of the ice sheets associated with the inception climate states of MIS 5 and MIS 7. Our results show that external forcing (orbitals and GHG) and sea-ice albedo feedbacks are the main fac- tors responsible for the difference in the land-ice initial state between MIS 5 and MIS 7 and that our cold climate model bias impacts more during a cold inception, such as MIS 7, than during a warm inception, such as MIS 5. In addition, if proper ice-elevation and albedo feedbacks are not taken into consideration, the evolution towards glacial inception is hardly simulated, especially for MIS 7. Finally, results high- light that while simulated ice volumes for MIS 5 glacial in- ception almost fit with paleo-reconstructions, the lack of pre- cipitation over high latitudes, identified as a bias of our cli- mate model, does not allow for a proper simulation of MIS 7 glacial inception

    The role of North Brazil Current transport in the paleoclimate of the Brazilian Nordeste margin and paleoceanography of the western tropical Atlantic during the late Quaternary

    Get PDF
    Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Palaeogeography, Palaeoclimatology, Palaeoecology 415 (2014): 3-13, doi:10.1016/j.palaeo.2014.05.030.Reconstructions of surface paleoceanographic conditions of the western equatorial Atlantic and past climates of the adjacent Northeast Brazilian (the "Nordeste") continental margin were undertaken by analyzing sediments from a piston core and associated gravity and box cores recovered from 3107 meter water depth at 0° 20’ N on the equatorial Brazilian continental slope. The record is dated by radiocarbon analysis and oxygen isotopic stratigraphy of planktonic foraminifers and spans from near- modern to approximately 110 Ka. High-resolution XRF analysis provides insight into the paleoclimate history of the Nordeste during the last glacial interval. Several large-amplitude and abrupt peaks are observed in the time series of Ti/Ca and are usually accompanied by peaks of Fe/K. Together these record periods of increased precipitation and intense weathering on the adjacent continent and increased terrestrial sediment discharge from Nordeste rivers into the Atlantic. Within the limits of dating accuracy, most Ti/Ca peaks correlate with Heinrich events in the North Atlantic. This record thus corroborates, and extends back in time, the previous record of Arz et al (1998) determined on sediment cores from farther southeast along the Nordeste margin. Stable oxygen isotopic analysis and Mg/Ca paleothermometry on the near- surface-dwelling planktonic foraminiferal species Globierinoides ruber find that mean sea-surface temperature (SST) during glacial time (20 to 55 Ka, n = 97) was 23.89 ± 0.79 °C and the mean SST during the late Holocene (0 to 5 Ka, n = 14) was 26.89 ± 0.33 °C. SSTs were 0.5 to 2 °C higher and inferred sea-surface salinities were lower during most of the periods of elevated Ti/Ca, thus, as observed in previous studies, the western equatorial Atlantic was warm (at least locally) and the adjacent southern tropical continent was wet at the same time that the high-latitude North Atlantic was cold. Using the SYNTRACE-CCSM3 fully coupled climate model with transient forcing for the period 22 Ka to present, we find that decreased transport of the North Brazil Current co-occurs with reduced Atlantic meridional overturning circulation, and colder-than-normal SSTs in the North Atlantic region. These simulated conditions are invariably associated with significantly increased precipitation in the Nordeste region.Funding for the cruise and post-cruise science was provided to PAB by NSF-OCE-0823650

    Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project

    Get PDF
    Climate and environments of the mid-Pliocene warm period (3.264 to 3.025 Ma) have been extensively studied. Whilst numerical models have shed light on the nature of climate at the time, uncertainties in their predictions have not been systematically examined. The Pliocene Model Intercomparison Project quantifies uncertainties in model outputs through a coordinated multi-model and multi-model/data intercomparison. Whilst commonalities in model outputs for the Pliocene are clearly evident, we show substantial variation in the sensitivity of models to the implementation of Pliocene boundary conditions. Models appear able to reproduce many regional changes in temperature reconstructed from geological proxies. However, data/model comparison highlights that models potentially underestimate polar amplification. To assert this conclusion with greater confidence, limitations in the time-averaged proxy data currently available must be addressed. Furthermore, sensitivity tests exploring the known unknowns in modelling Pliocene climate specifically relevant to the high latitudes are essential (e.g. palaeogeography, gateways, orbital forcing and trace gasses). Estimates of longer-term sensitivity to CO2 (also known as Earth System Sensitivity; ESS), support previous work suggesting that ESS is greater than Climate Sensitivity (CS), and suggest that the ratio of ESS to CS is between 1 and 2, with a "best" estimate of 1.5

    Critical evaluation of climate syntheses to benchmark CMIP6/PMIP4 127 ka Last Interglacial simulations in the high-latitude regions

    Get PDF
    The Last Interglacial (LIG, ∼129-116 thousand years ago, ka) represents an excellent case study to investigate the response of sensitive components of the Earth System and mechanisms of high-lati tude amplification to a climate warmer than present-day. The Paleoclimate Model Intercomparison Project (Phase 4, hereafter referred as PMIP4) and the Coupled Model Intercomparison Project (Phase 6, hereafter referred as CMIP6) are coordinating the design of (1) a LIG Tier 1 equilibrium simulation to simulate the climate response at 127 ka, a time interval associated with a strong orbital forcing and greenhouse gas concentrations close to preindustrial levels and (2) associated Tier 2 sensitivity experiments to examine the role of the ocean, vegetation and dust feedbacks in modulating the response to this orbital forcing. Evaluating the capability of the CMIP6/PMIP4 models to reproduce the 127 ka polar and sub-polar climate will require appropriate data-based benchmarks which are currently missing. Based on a recent data synthesis that offers the first spatio-temporal representation of high-latitude (i.e. poleward of 40°N and 40°S) surface temperature evolution during the LIG, we produce a new 126–128 ka time slab, hereafter named 127 ka time slice. This 127 ka time slice represents surface temperature anomalies relative to preindustrial and is associated with quantitative estimates of the uncertainties related to relative dating and surface temperature reconstruction methods. It illustrates warmer-than-preindustrial conditions in the high-latitude regions of both hemispheres. In particular, summer sea surface temperatures (SST) in the North Atlantic region were on average 1.1 °C (with a standard error of the mean of 0.7 °C) warmer relative to preindustrial and 1.8 °C (with a standard error of the mean of 0.8 °C) in the Southern Ocean. In Antarctica, average 127 ka annual surface air temperature was 2.2 °C (with a standard error of the mean of 1.4 °C) warmer compared to preindustrial. We provide a critical evaluation of the latest LIG surface climate compilations that are available for evaluating LIG climate model experiments. We discuss in particular our new 127 ka time-slice in the context of existing LIG surface temperature time-slices. We also compare the 127 ka time slice with the ones published for the 125 and 130 ka time intervals and we discuss the potential and limits of a data-based time slice at 127 ka in the context of the upcoming coordinated modeling exercise. Finally we provide guidance on the use of the available LIG climate compilations for future model-data comparison exercises in the framework of the upcoming CMIP6/PMIP4 127 ka experiments. We do not recommend the use of LIG peak warmth-centered syntheses. Instead we promote the use of the most recent syntheses that are based on coherent chronologies between paleoclimatic records and provide spatio-temporal reconstruction of the LIG climate. In particular, we recommend using our new 127 ka data-based time slice in model-data comparison studies with a focus on the high-latitude climate.E. C. is funded by the European Union's Seventh Framework Programme for research and innovation under the Marie Skłodowska-Curie grant agreement no 600207. B. L. O-B is supported by the U.S. National Science Foundation (NSF) sponsorship of NCAR. R. F. acknowledges the funding of the NSF Arctic System Science. E.W.W. is supported by the Royal Society. This is LSCE contribution no 6117

    Challenges and research priorities to understand interactions between climate, ice sheets and global mean sea level during past interglacials

    Get PDF
    Quaternary interglacials provide key observations of the Earth system's responses to orbital and greenhouse gas forcing. They also inform on the capabilities of Earth system models, used for projecting the polar ice-sheet and sea-level responses to a regional warmth comparable to that expected by 2100 C.E. However, a number of uncertainties remain regarding the processes and feedbacks linking climate, ice-sheet and sea-level changes during past warm intervals. Here, we delineate the major research questions that need to be resolved and future research directions that should be taken by the paleoclimate, sea-level and ice-sheet research communities in order to increase confidence in the use of past interglacial climate, ice-sheet and sea-level reconstructions to constrain future predictions. These questions were formulated during a joint workshop held by the PAGES-INQUA PALSEA (PALeo constraints on SEA level rise) and the PAGES-PMIP QUIGS (QUaternary InterGlacialS) Working Groups in September 2018.PAGE

    Investigating the Direct Meltwater Effect in Terrestrial Oxygenâ Isotope Paleoclimate Records Using an Isotopeâ Enabled Earth System Model

    Full text link
    Variations in terrestrial oxygenâ isotope reconstructions from ice cores and speleothems have been primarily attributed to climatic changes of surface air temperature, precipitation amount, or atmospheric circulation. Here we demonstrate with the fully coupled isotopeâ enabled Community Earth System Model an additional process contributing to the oxygenâ isotope variations during glacial meltwater events. This process, termed â the direct meltwater effect,â involves propagating large amounts of isotopically depleted meltwater throughout the hydrological cycle and is independent of climatic changes. We find that the direct meltwater effect can make up 15â 35% of the δ18O signals in precipitation over Greenland and eastern Brazil for large freshwater forcings (0.25â 0.50 sverdrup (106 m3/s)). Model simulations further demonstrate that the direct meltwater effect increases with the magnitude and duration of the freshwater forcing and is sensitive to both the location and shape of the meltwater. These new modeling results have important implications for past climate interpretations of δ18O.Key PointsA portion of the δ18O signal in landâ based paleoclimate proxies can be attributed to the direct meltwater effect instead of climatic changesThe direct meltwater effect can make up 15â 35% of the δ18O signals in precipitation in Greenland and eastern Brazil for large meltwater eventsThe direct meltwater effect increases with the magnitude and duration of the freshwater forcing and is sensitive to location and shape dependentPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141374/1/grl56782_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141374/2/grl56782-sup-0001-Supporting_Information.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141374/3/grl56782.pd

    Simulating the mid-Pliocene Warm Period with the CCSM4 model

    Get PDF
    This paper describes the experimental design and model results from a 500 yr fully coupled Community Climate System, version 4, simulation of the mid-Pliocene Warm Period (mPWP) (ca. 3.3–3.0 Ma). We simulate the mPWP using the "alternate" protocol prescribed by the Pliocene Model Intercomparison Project (PlioMIP) for the AOGCM simulation (Experiment 2). Results from the CCSM4 mPWP simulation show a 1.9 °C increase in global mean annual temperature compared to the 1850 preindustrial control, with a polar amplification of ~3 times the global warming. Global precipitation increases slightly by 0.09 mm day−1 and the monsoon rainfall is enhanced, particularly in the Northern Hemisphere (NH). Areal sea ice extent decreases in both hemispheres but persists through the summers. The model simulates a relaxation of the zonal sea surface temperature (SST) gradient in the tropical Pacific, with the El Niño–Southern Oscillation (Niño3.4) ~20% weaker than the preindustrial and exhibiting extended periods of quiescence of up to 150 yr. The maximum Atlantic meridional overturning circulation and northward Atlantic oceanic heat transport are indistinguishable from the control. As compared to PRISM3, CCSM4 overestimates Southern Hemisphere (SH) sea surface temperatures, but underestimates NH warming, particularly in the North Atlantic, suggesting that an increase in northward ocean heat transport would bring CCSM4 SSTs into better alignment with proxy data

    Hydroclimate footprint of pan-Asian monsoon water isotope during the last deglaciation

    Get PDF
    Oxygen isotope speleothem records exhibit coherent variability over the pan-Asian summer monsoon (AM) region. The hydroclimatic representation of these oxygen isotope records for the AM, however, has remained poorly understood. Here, combining an isotope-enabled Earth system model in transient experiments with proxy records, we show that the widespread AM delta O-18(c) signal during the last deglaciation (20 to 11 thousand years ago) is accompanied by a continental-scale, coherent hydroclimate footprint, with spatially opposite signs in rainfall. This footprint is generated as a dynamically coherent response of the AM system primarily to meltwater forcing and secondarily to insolation forcing and is further reinforced by atmospheric teleconnection. Hence, widespread delta O-18(p) depletion in the AM region is accompanied by a northward migration of the westerly jet and enhanced southwesterly monsoon wind, as well as increased rainfall from South Asia (India) to northern China but decreased rainfall in southeast China
    corecore