77 research outputs found

    Thriving or surviving? The isotopic record of the Wrangel Island woolly mammoth population

    Get PDF
    The world's last population of woolly mammoths (Mammuthus primigenius) lived on Wrangel Island persisting well into the Holocene, going extinct at ca. 4000 cal BP. According to the frequency of 'radiocarbon dated mammoth remains from the island, the extinction appears fairly abrupt. This study investigates the ecology of the Wrangel Island mammoth population by means of carbon, nitrogen and sulfur isotope analyses. We report new isotope data on 77 radiocarbon dated mammoth specimens from Wrangel Island and Siberia, and evaluate them in relation to previously published isotope data for Pleistocene mammoths from Beringia and lower latitude Eurasia, and the other insular Holocene mammoth population from St. Paul Island. Contrary to prior suggestions of gradual habitat deterioration, the nitrogen isotope values of the Wrangel Island mammoths do not support a decline in forage quality/quantity, and are in fact very similar to their north Beringian forebears right to the end. However, compared to Siberian mammoths, those from Wrangel Island show a difference in their energy economy as judged by the carbon isotope values of structural carbonate, possibly representing a lower need of adaptive strategies for survival in extreme cold. Increased mid-Holocene weathering of rock formations in the central mountains is suggested by sulfur isotope values. Scenarios related to water quality problems stemming from increased weathering, and a possibility of a catastrophic starvation event as a cause of, or contributing factor in their demise are discussed. (C) 2019 The Authors. Published by Elsevier Ltd.Peer reviewe

    The dIANA database - Resource for isotopic paleodietary research in the Baltic Sea area

    Get PDF
    Paleodietary research is a complex field, which requires large sets of background information. Owing to increasing interest and activity in the field, a substantial amount of archaeological isotope baseline data exist for Northern Europe, consisting mainly of animal bone collagen delta C-13, delta N-15, and delta S-34 values. However, the data are scattered into dozens of publications written in multiple languages and less-accessible formats, making the data laborious to use. This article presents the first compilation work of this data, the open access dIANA database (Dietary Isotopic baseline for the Ancient North; https://www.oasisnorth.org/diana.html), aimed to support (paleo)dietary research in the Baltic Sea area. The database work is complemented with new analyses of archaeological and (pre-)modern domestic and wild fauna from Finland and Russia broadening the selection of analysed species in the database. We present and discuss data examples, which on one hand show existing spatiotemporal isotope patterns related to diet and differences in the environmental carbon sources and on the other, also visualize the current status of baseline research and the need for further analyses in the circum-Baltic area

    Holistic corpus-based dialectology

    Get PDF
    This paper is concerned with sketching future directions for corpus-based dialectology. We advocate a holistic approach to the study of geographically conditioned linguistic variability, and we present a suitable methodology, 'corpusbased dialectometry', in exactly this spirit. Specifically, we argue that in order to live up to the potential of the corpus-based method, practitioners need to (i) abandon their exclusive focus on individual linguistic features in favor of the study of feature aggregates, (ii) draw on computationally advanced multivariate analysis techniques (such as multidimensional scaling, cluster analysis, and principal component analysis), and (iii) aid interpretation of empirical results by marshalling state-of-the-art data visualization techniques. To exemplify this line of analysis, we present a case study which explores joint frequency variability of 57 morphosyntax features in 34 dialects all over Great Britain

    Tree height strongly affects estimates of water-use efficiency responses to climate and CO2 using isotopes

    Get PDF
    Various studies report substantial increases in intrinsic water-use efficiency (Wi), estimated using carbon isotopes in tree rings, suggesting trees are gaining increasingly more carbon per unit water lost due to increases in atmospheric CO2. Usually, reconstructions do not, however, correct for the effect of intrinsic developmental changes in Wi as trees grow larger. Here we show, by comparingWi across varying tree sizes at one CO2 level, that ignoring such developmental effects can severely affect inferences of trees' Wi. Wi doubled or even tripled over a trees' lifespan in three broadleaf species due to changes in tree height and light availability alone, and there are also weak trends for Pine trees. Developmental trends in broadleaf species are as large as the trends previously assigned to CO2 and climate. Credible future tree ring isotope studies require explicit accounting for species-specific developmental effects before CO2 and climate effects are inferred.Peer reviewe

    A 1500-year multiproxy record of coastal hypoxia from the northern Baltic Sea indicates unprecedented deoxygenation over the 20th century

    Get PDF
    The anthropogenically forced expansion of coastal hypoxia is a major environmental problem affecting coastal ecosystems and biogeochemical cycles throughout the world. The Baltic Sea is a semi-enclosed shelf sea whose central deep basins have been highly prone to deoxygenation during its Holocene history, as shown previously by numerous paleoenvironmental studies. However, long-term data on past fluctuations in the intensity of hypoxia in the coastal zone of the Baltic Sea are largely lacking, despite the significant role of these areas in retaining nutrients derived from the catchment. Here we present a 1500-year multiproxy record of near-bottom water redox changes from the coastal zone of the northern Baltic Sea, encompassing the climatic phases of the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA), and the Modern Warm Period (MoWP). Our reconstruction shows that although multicentennial climate variability has modulated the depositional conditions and delivery of organic matter (OM) to the basin the modern aggravation of coastal hypoxia is unprecedented and, in addition to gradual changes in the basin configuration, it must have been forced by excess human-induced nutrient loading. Alongside the anthropogenic nutrient input, the progressive deoxygenation since the beginning of the 1900s was fueled by the combined effects of gradual shoaling of the basin and warming climate, which amplified sediment focusing and increased the vulnerability to hypoxia. Importantly, the eutrophication of coastal waters in our study area began decades earlier than previously thought, leading to a marked aggravation of hypoxia in the 1950s. We find no evidence of similar anthropogenic forcing during the MCA. These results have implications for the assessment of reference conditions for coastal water quality. Furthermore, this study highlights the need for combined use of sedimentological, ichnological, and geochemical proxies in order to robustly reconstruct subtle redox shifts especially in dynamic, non-euxinic coastal settings with strong seasonal contrasts in the bottom water quality.</p

    A 1500-year multiproxy record of coastal hypoxia from the northern Baltic Sea indicates unprecedented deoxygenation over the 20th century

    Get PDF
    The anthropogenically forced expansion of coastal hypoxia is a major environmental problem affecting coastal ecosystems and biogeochemical cycles throughout the world. The Baltic Sea is a semi-enclosed shelf sea whose central deep basins have been highly prone to deoxygenation during its Holocene history, as shown previously by numerous paleoenvironmental studies. However, long-term data on past fluctuations in the intensity of hypoxia in the coastal zone of the Baltic Sea are largely lacking, despite the significant role of these areas in retaining nutrients derived from the catchment. Here we present a 1500-year multiproxy record of near-bottom water redox changes from the coastal zone of the northern Baltic Sea, encompassing the climatic phases of the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA), and the Modern Warm Period (MoWP). Our reconstruction shows that although multicentennial climate variability has modulated the depositional conditions and delivery of organic matter (OM) to the basin the modern aggravation of coastal hypoxia is unprecedented and, in addition to gradual changes in the basin configuration, it must have been forced by excess human-induced nutrient loading. Alongside the anthropogenic nutrient input, the progressive deoxygenation since the beginning of the 1900s was fueled by the combined effects of gradual shoaling of the basin and warming climate, which amplified sediment focusing and increased the vulnerability to hypoxia. Importantly, the eutrophication of coastal waters in our study area began decades earlier than previously thought, leading to a marked aggravation of hypoxia in the 1950s. We find no evidence of similar anthropogenic forcing during the MCA. These results have implications for the assessment of reference conditions for coastal water quality. Furthermore, this study highlights the need for combined use of sedimentological, ichnological, and geochemical proxies in order to robustly reconstruct subtle redox shifts especially in dynamic, non-euxinic coastal settings with strong seasonal contrasts in the bottom water quality.</p

    New Technologies’ Promise to the Self and the Becoming of the Sacred: Insights from Georges Bataille’s Concept of Transgression

    Get PDF
    This article draws on Georges Bataille’s concept of transgression, a key element in Bataille’s theory of the sacred, to highlight structural implications of the way the self-empowerment ethos of new technologies suffuses the digital tracking culture. Pointing to the original conceptual stance of transgression, worked out against prohibition, I first argue that, beyond a critique of new technologies’ promise of self-empowerment as coming at the expense of an acknowledgement of the ultimate taboo—death—is the problem of the sanitizing of the tension between the crossing of the line of the symbolic taboo and prohibition; this undermines a “libidinal investment” towards the sacred, which is central in Bataille’s theory. Second, focussing on “eroticism”, since this embodies the emancipative potential of the Bataillean sacred, I argue that while a fear of eroticism marks out the digital technological realm, this is covered up by the blurring of boundaries between pleasure, fun and sex(iness) that currently governs our experience with technological devices

    Human mitochondrial DNA lineages in Iron-Age Fennoscandia suggest incipient admixture and eastern introduction of farming-related maternal ancestry

    Get PDF
    Human ancient DNA studies have revealed high mobility in Europe's past, and have helped to decode the human history on the Eurasian continent. Northeastern Europe, especially north of the Baltic Sea, however, remains less well understood largely due to the lack of preserved human remains. Finland, with a divergent population history from most of Europe, offers a unique perspective to hunter-gatherer way of life, but thus far genetic information on prehistoric human groups in Finland is nearly absent. Here we report 103 complete ancient mitochondrial genomes from human remains dated to AD 300-1800, and explore mtDNA diversity associated with hunter-gatherers and Neolithic farmers. The results indicate largely unadmixed mtDNA pools of differing ancestries from Iron-Age on, suggesting a rather late genetic shift from hunter-gatherers towards farmers in North-East Europe. Furthermore, the data suggest eastern introduction of farmer-related haplogroups into Finland, contradicting contemporary genetic patterns in Finns

    Facilitating the development of controlled vocabularies for metabolomics technologies with text mining

    Get PDF
    BACKGROUND: Many bioinformatics applications rely on controlled vocabularies or ontologies to consistently interpret and seamlessly integrate information scattered across public resources. Experimental data sets from metabolomics studies need to be integrated with one another, but also with data produced by other types of omics studies in the spirit of systems biology, hence the pressing need for vocabularies and ontologies in metabolomics. However, it is time-consuming and non trivial to construct these resources manually. RESULTS: We describe a methodology for rapid development of controlled vocabularies, a study originally motivated by the needs for vocabularies describing metabolomics technologies. We present case studies involving two controlled vocabularies (for nuclear magnetic resonance spectroscopy and gas chromatography) whose development is currently underway as part of the Metabolomics Standards Initiative. The initial vocabularies were compiled manually, providing a total of 243 and 152 terms. A total of 5,699 and 2,612 new terms were acquired automatically from the literature. The analysis of the results showed that full-text articles (especially the Materials and Methods sections) are the major source of technology-specific terms as opposed to paper abstracts. CONCLUSIONS: We suggest a text mining method for efficient corpus-based term acquisition as a way of rapidly expanding a set of controlled vocabularies with the terms used in the scientific literature. We adopted an integrative approach, combining relatively generic software and data resources for time- and cost-effective development of a text mining tool for expansion of controlled vocabularies across various domains, as a practical alternative to both manual term collection and tailor-made named entity recognition methods

    The population history of northeastern Siberia since the Pleistocene.

    Get PDF
    Northeastern Siberia has been inhabited by humans for more than 40,000 years but its deep population history remains poorly understood. Here we investigate the late Pleistocene population history of northeastern Siberia through analyses of 34 newly recovered ancient genomes that date to between 31,000 and 600 years ago. We document complex population dynamics during this period, including at least three major migration events: an initial peopling by a previously unknown Palaeolithic population of 'Ancient North Siberians' who are distantly related to early West Eurasian hunter-gatherers; the arrival of East Asian-related peoples, which gave rise to 'Ancient Palaeo-Siberians' who are closely related to contemporary communities from far-northeastern Siberia (such as the Koryaks), as well as Native Americans; and a Holocene migration of other East Asian-related peoples, who we name 'Neo-Siberians', and from whom many contemporary Siberians are descended. Each of these population expansions largely replaced the earlier inhabitants, and ultimately generated the mosaic genetic make-up of contemporary peoples who inhabit a vast area across northern Eurasia and the Americas
    • 

    corecore