15 research outputs found

    Triggering of Suicidal Erythrocyte Death by Psammaplin A

    Get PDF
    Background/Aims: Psammaplin A, a natural product isolated from marine sponges, triggers apoptosis of tumor cells and is thus considered for the treatment of malignancy. In analogy to apoptosis of nucleated tumor cells, erythrocytes may enter eryptosis, a suicidal death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Cellular mechanisms stimulating eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress and ceramide. The present study explored, whether Psammaplin A induces eryptosis and to possibly shed some light on the underlying mechanisms. Methods: Phosphatidylserine exposing erythrocytes were identified utilizing annexin-V-binding, cell volume was estimated from forward scatter, [Ca2+]i determined utilizing Fluo3-fluorescence, the abundance of reactive oxygen species (ROS) quantified with DCFDA dependent fluorescence, and ceramide abundance at the erythrocyte surface detected with specific antibodies. Results: A 48 hours exposure of human erythrocytes to Psammaplin A (2-8 \u3bcg/ml) significantly decreased forward scatter and significantly increased the percentage of annexin-V-binding cells. Psammaplin A significantly increased Fluo3-fluorescence, the effect of Psammaplin A on annexin-V-binding and forward scatter was, however, not significantly blunted by removal of extracellular Ca2+. Psammaplin A significantly increased DCFDA fluorescence and ceramide abundance. Conclusions: Psammaplin A triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect paralleled by increase of [Ca2+]i, induction of oxidative stress and enhanced appearance of ceramide

    Stimulation of Suicidal Erythrocyte Death by Ceritinib-Treatment of Human Erythrocytes

    Get PDF
    Background/Aims: The anaplastic lymphoma kinase (ALK) inhibitor ceritinib is utilized for the treatment of ALK positive non-small cell lung carcinoma. Side effects of the drug include decrease of blood hemoglobin concentration. Possible causes of anemia include stimulation of suicidal erythrocyte death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling of eryptosis includes increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, ceramide, staurosporine sensitive protein kinase C, SB203580 sensitive p38 kinase, D4476 sensitive casein kinase 1, and zVAD sensitive caspases. The present study explored, whether ceritinib induces eryptosis and, if so, to shed light on the cellular mechanisms involved. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Results: A 48 hours exposure of human erythrocytes to ceritinib (1 \ub5g/ml) significantly increased the percentage of annexin-V-binding cells, significantly decreased forward scatter, significantly increased Fluo3-fluorescence, but did not significantly modify DCFDA fluorescence or ceramide abundance. The effect of ceritinib on annexin-V-binding was significantly blunted but not abolished by removal of extracellular Ca2+, by the kinase inhibitors staurosporine (1 \ub5M), SB203580 (2 \ub5M) and D4476 (10 \ub5M), as well as by caspase inhibitor zVAD (10 \ub5M). Conclusions: Ceritinib triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to Ca2+ entry, as well as activation of kinases and Caspases

    Stimulating effect of elvitegravir on suicidal erythrocyte death

    Get PDF
    Background/Aims: The antiviral drug Elvitegravir is used for the treatment of Human Immunodeficiency Virus (HIV) infections. The present study explored whether the drug is able to trigger eryptosis, the suicidal death of erythrocytes. Eryptosis is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, ceramide, activated p38 kinase and activated caspases. The present study explored, whether Elvitegravir induces eryptosis and, if so, to shed light on the mechanisms involved. Methods: Phosphatidylserine abundance at the erythrocyte surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, abundance of reactive oxygen species (ROS) from DCFDA dependent fluorescence, and ceramide abundance at the erythrocyte surface utilizing specific antibodies. Results: A 48 hours exposure of human erythrocytes to Elvitegravir ( 65 1.5 \u3bcg/ml) significantly increased the percentage of annexin-V-binding cells, and significantly decreased forward scatter. Elvitegravir (2.5 \u3bcg/ml) significantly increased Fluo3-fluorescence, but did not significantly modify DCFDA fluorescence or ceramide abundance. The effect of Elvitegravir on annexin-V-binding was significantly blunted by removal of extracellular Ca2+, but not in the presence of p38 kinase inhibitor SB203580 (2 \u3bcM) or in the presence of pancaspase inhibitor zVAD (10 \u3bcM). Conclusions: Elvitegravir triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part due to entry of extracellular Ca2+

    Stimulating effect of terfenadine on erythrocyte cell membrane scrambling

    Get PDF
    Background/Aims: The antihistaminic drug Terfenadine may trigger apoptosis of tumor cells, an effect unrelated to its effect on histamine receptors. Similar to apoptosis of nucleated cells, erythrocytes may enter eryptosis, the suicidal death of erythrocytes characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling triggering eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, and ceramide. The present study explored, whether Terfenadine is capable to trigger eryptosis. Methods: Flow cytometry was employed to estimate phosphatidylserine abundance at the erythrocyte surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, abundance of reactive oxygen species (ROS) from 2\u2032,7\u2032-dichlorodihydrofluorescein (DCF) diacetate dependent fluorescence, and ceramide abundance at the human erythrocyte surface utilizing specific antibodies. Hemolysis was quantified from haemoglobin concentration in the supernatant. Results: A 48 hours exposure of human erythrocytes to Terfenadine ( 65 5 \u3bcM) significantly increased the percentage of annexin-V-binding cells and triggered hemolysis without significantly modifying the average forward scatter. Terfenadine (7.5 \u3bcM) significantly increased Fluo3-fluorescence, but did not significantly modify DCF fluorescence or ceramide abundance. The effect of Terfenadine on annexin-V-binding was significantly blunted but not abolished by removal of extracellular Ca2+. Exposure of human erythrocytes to Ca2+ ionophore ionomycin (1 \u3bcM, 15 min) triggered annexin-V-binding, an effect augmented by Terfenadine pretreatment (10 \u3bcM, 48 hours). Conclusions: Terfenadine triggers phospholipid scrambling of the human erythrocyte cell membrane, an effect in part due to entry of extracellular Ca2+ and in part due to sensitizing human erythrocyte cell membrane scrambling to Ca2+

    The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    The global burden of cancer attributable to risk factors, 2010–19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    BACKGROUND: Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. METHODS: The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk–outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. FINDINGS: Globally, in 2019, the risk factors included in this analysis accounted for 4·45 million (95% uncertainty interval 4·01–4·94) deaths and 105 million (95·0–116) DALYs for both sexes combined, representing 44·4% (41·3–48·4) of all cancer deaths and 42·0% (39·1–45·6) of all DALYs. There were 2·88 million (2·60–3·18) risk-attributable cancer deaths in males (50·6% [47·8–54·1] of all male cancer deaths) and 1·58 million (1·36–1·84) risk-attributable cancer deaths in females (36·3% [32·5–41·3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20·4% (12·6–28·4) and DALYs by 16·8% (8·8–25·0), with the greatest percentage increase in metabolic risks (34·7% [27·9–42·8] and 33·3% [25·8–42·0]). INTERPRETATION: The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden

    Thrombospondin-1/CD47 signaling modulates transmembrane cation conductance, survival, and deformability of human red blood cells

    No full text
    Background: Thrombospondin-1 (TSP-1), a Ca2+-binding trimeric glycoprotein secreted by multiple cell types, has been implicated in the pathophysiology of several clinical conditions. Signaling involving TSP-1, through its cognate receptor CD47, orchestrates a wide array of cellular functions including cytoskeletal organization, migration, cell-cell interaction, cell proliferation, autophagy, and apoptosis. In the present study, we investigated the impact of TSP-1/CD47 signaling on Ca2+ dynamics, survival, and deformability of human red blood cells (RBCs). Methods: Whole-cell patch-clamp was employed to examine transmembrane cation conductance. RBC intracellular Ca2+ levels and multiple indices of RBC cell death were determined using cytofluorometry analysis. RBC morphology and microvesiculation were examined using imaging flow cytometry. RBC deformability was measured using laser-assisted optical rotational cell analyzer. Results: Exposure of RBCs to recombinant human TSP-1 significantly increased RBC intracellular Ca2+ levels. As judged by electrophysiology experiments, TSP-1 treatment elicited an amiloride-sensitive inward current alluding to a possible Ca2+ influx via non-selective cation channels. Exogenous TSP-1 promoted microparticle shedding as well as enhancing Ca2+- and nitric oxide-mediated RBC cell death. Monoclonal (mouse IgG1) antibody-mediated CD47 ligation using 1F7 recapitulated the cell death-inducing effects of TSP-1. Furthermore, TSP-1 treatment altered RBC cell shape and stiffness (maximum elongation index). Conclusions: Taken together, our data unravel a new role for TSP-1/CD47 signaling in mediating Ca2+ influx into RBCs, a mechanism potentially contributing to their dysfunction in a variety of systemic diseases
    corecore