18 research outputs found

    On the Regression and Assimilation for Air Quality Mapping Using Dense Low-Cost WSN

    Get PDF
    International audienceThe use of low-cost Wireless Sensor Networks (WSNs) for air quality monitoring has recently attracted a great deal of interest. Indeed, the cost-effectiveness of emerging sensors and their small size allow for dense deployments and hence improve the spatial granularity. However, these sensors offer a low accuracy and their measurement errors may be significant due to the underlying sensing technologies. The main aim of this work is to reconsider and compare some regression approaches to assimilation ones while taking into account the intrinsic characteristics of dense deployment of low cost WSN for air quality monitoring (high density, numerical model errors and sensing errors). For that, we propose a general framework that allows the comparison of different strategies based on numerical simulations and an adequate estimation of the simulation error covariances as well as the sensing errors covariances. While considering the case of Lyon city and a widely used numerical model, we characterize the simulation errors, conduct extensive simulations and compare several regression and assimilation approaches. The results show that from a given sensing error threshold, regression methods present an optimal sensor density from which the mapping quality decreases. Results also show that the Random Forest method is often the best regression approach but still less efficient than the BLUE assimilation approach when using adequate correction parameters

    The effect of hot days on occupational heat stress in the manufacturing industry: implications for workers' well-being and productivity

    Get PDF
    Climate change is expected to exacerbate heat stress at the workplace in temperate regions, such as Slovenia. It is therefore of paramount importance to study present and future summer heat conditions and analyze the impact of heat on workers. A set of climate indices based on summer mean (Tmean) and maximum (Tmax) air temperatures, such as the number of hot days (HD: Tmax above 30 °C), and Wet Bulb Globe Temperature (WBGT) were used to account for heat conditions in Slovenia at six locations in the period 1981–2010. Observed trends (1961–2011) of Tmean and Tmax in July were positive, being larger in the eastern part of the country. Climate change projections showed an increase up to 4.5 °C for mean temperature and 35 days for HD by the end of the twenty-first century under the high emission scenario. The increase in WBGT was smaller, although sufficiently high to increase the frequency of days with a high risk of heat stress up to an average of a third of the summer days. A case study performed at a Slovenian automobile parts manufacturing plant revealed non-optimal working conditions during summer 2016 (WBGT mainly between 20 and 25 °C). A survey conducted on 400 workers revealed that 96% perceived the temperature conditions as unsuitable, and 56% experienced headaches and fatigue. Given these conditions and climate change projections, the escalating problem of heat is worrisome. The European Commission initiated a program of research within the Horizon 2020 program to develop a heat warning system for European workers and employers, which will incorporate case-specific solutions to mitigate heat stress.The work was supported by the European Union Horizon 2020 Research and Innovation Action (Project number 668786: HEATSHIELD)

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species

    Climate change and occupational health and safety in a temperate climate: Potential impacts and research priorities in Quebec, Canada

    Get PDF
    The potential impacts of climate change (CC) on Occupational Health and Safety (OHS) have been studied a little in tropical countries, while they received no attention in northern industrialized countries with a temperate climate. This work aimed to establish an overview of the potential links between CC and OHS in those countries and to determine research priorities for Quebec, Canada. A narrative review of the scientific literature (2005-2010) was presented to a working group of international and national experts and stakeholders during a workshop held in 2010. The working group was invited to identify knowledge gaps, and a modified Delphi method helped prioritize research avenues. This process highlighted five categories of hazards that are likely to impact OHS in northern industrialized countries: heat waves/increased temperatures, air pollutants, UV radiation, extreme weather events, vector-borne/zoonotic diseases. These hazards will affect working activities related to natural resources (i.e. agriculture, fishing and forestry) and may influence the socioeconomic context (built environment and green industries), thus indirectly modifying OHS. From this consensus approach, three categories of research were identified: 1) Knowledge acquisition on hazards, target populations and methods of adaptation; 2) Surveillance of diseases/ accidents/occupational hazards; and 3) Development of new occupational adaptation strategies

    Evidence for increasing densities and geographic ranges of tick species of public health significance other than Ixodes scapularis in Québec, Canada.

    No full text
    Climate change is driving emergence and establishment of Ixodes scapularis, the main vector of Lyme disease in Québec, Canada. As for the black-legged tick, I. scapularis Say, global warming may also favor northward expansion of other species of medically important ticks. The aims of this study were to determine (1) current diversity and abundance of ticks of public health significance other than I. scapularis, (2) sex and age of the human population bitten by these ticks (3), and the seasonal and geographic pattern of their occurrence. From 2007 to 2015, twelve tick species other than I. scapularis were submitted in the Québec passive tick surveillance program. Of these 9243 ticks, 91.2% were Ixodes cookei, 4.1% were Dermacentor variabilis, 4.0% were Rhipicephalus sanguineus and 0.7% were Amblyomma americanum. The combined annual proportion of submitted I. cookei, D. variabilis, R. sanguineus and A. americanum ticks in passive surveillance rose from 6.1% in 2007 to 16.0% in 2015 and an annual growing trend was observed for each tick species. The number of municipalities where I. cookei ticks were acquired rose from 104 to 197 during the same period. Of the 862 people bitten by these ticks, 43.3% were I. cookei ticks removed from children aged < 10 years. These findings demonstrate the need for surveillance of all the tick species of medical importance in Québec, particularly because climate may increase their abundance and geographic ranges, increasing the risk to the public of the diseases they transmit

    An Overview of Occupational Risks From Climate Change

    No full text
    Changes in atmosphere and temperature are affecting multiple environmental indicators from extreme heat events to global air quality. Workers will be uniquely affected by climate change, and the occupational impacts of major shifts in atmospheric and weather conditions need greater attention. Climate change-related exposures most likely to differentially affect workers in the USA and globally include heat, ozone, polycyclic aromatic hydrocarbons, other chemicals, pathogenic microorganisms, vector-borne diseases, violence, and wildfires. Epidemiologic evidence documents a U-, J-, or V-shaped relationship between temperature and mortality. Whereas heat-related morbidity and mortality risks are most evident in agriculture, many other outdoor occupational sectors are also at risk, including construction, transportation, landscaping, firefighting, and other emergency response operations. The toxicity of chemicals change under hyperthermic conditions, particularly for pesticides and ozone. Combined with climate-related changes in chemical transport and distribution, these interactions represent unique health risks specifically to workers. Links between heat and interpersonal conflict including violence require attention because they pose threats to the safety of emergency medicine, peacekeeping and humanitarian relief, and public safety professionals. Recommendations for anticipating how US workers will be most susceptible to climate change include formal monitoring systems for agricultural workers; modeling scenarios focusing on occupational impacts of extreme climate events including floods, wildfires, and chemical spills; and national research agenda setting focusing on control and mitigation of occupational susceptibility to climate change
    corecore