80 research outputs found

    Plasma Kallikrein Mediates Retinal Vascular Dysfunction and Induces Retinal Thickening in Diabetic Rats

    Get PDF
    Objective: Plasma kallikrein (PK) has been identified in vitreous fluid obtained from individuals with diabetic retinopathy and has been implicated in contributing to retinal vascular dysfunction. In this report, we examined the effects of PK on retinal vascular functions and thickness in diabetic rats. Research Design and Methods: We investigated the effects of a selective PK inhibitor, ASP-440, and C1 inhibitor (C1-INH), the primary physiological inhibitor of PK, on retinal vascular permeability (RVP) and hemodynamics in rats with streptozotocin-induced diabetes. The effect of intravitreal PK injection on retinal thickness was examined by spectral domain optical coherence tomography. Results: Systemic continuous administration of ASP-440 for 4 weeks initiated at the time of diabetes onset inhibited RVP by 42% (P = 0.013) and 83% (P < 0.001) at doses of 0.25 and 0.6 mg/kg per day, respectively. Administration of ASP-440 initiated 2 weeks after the onset of diabetes ameliorated both RVP and retinal blood flow abnormalities in diabetic rats measured at 4 weeks’ diabetes duration. Intravitreal injection of C1-INH similarly decreased impaired RVP in rats with 2 weeks’ diabetes duration. Intravitreal injection of PK increased both acute RVP and sustained focal RVP (24 h postinjection) to a greater extent in diabetic rats compared with nondiabetic control rats. Intravitreal injection of PK increased retinal thickness compared with baseline to a greater extent (P = 0.017) in diabetic rats (from 193 ±\pm 10 μ\mum to 223 ±\pm 13 μ\mum) compared with nondiabetic rats (from 182 ±\pm 8 μ\mum to 193 ±\pm 9 μ\mum). Conclusions: These results show that PK contributes to retinal vascular dysfunctions in diabetic rats and that the combination of diabetes and intravitreal injection of PK in rats induces retinal thickening

    A systematic review and meta-analysis of the impact of the left atrial appendage closure on left atrial function.

    Get PDF
    BACKGROUND: Left atrial (LA) appendage closure (LAAC) is effective in patients with atrial fibrillation who are not candidates for long-term anticoagulation. However, the impact of LAAC on LA function is unknown. The aim of this study is to evaluate the impact of LAAC on atrial function. METHODS: This meta-analysis was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A search strategy was designed to utilize PubMed/Medline, EMBASE, and Google scholar for studies showing the effect of LAAC on the LA function from inception to November 20, 2021. The standardized mean difference (SMD) was calculated from the means and standard deviations. RESULTS: Of 247 studies initially identified, 8 studies comprising 260 patients were included in the final analysis. There was a significant increase in LA emptying fraction following LAAC compared with preoperative function (SMD: 0.53; 95% confidence interval [CI]: 0.04-1.01; p = .03; I2  = 75%). In contrast, there were no significant differences in LA volume (SMD: -0.07; 95% CI: -0.82-0.69; p = .86; I2  = 92%) peak atrial longitudinal strain (SMD: 0.50; 95% CI: -0.08-1.08; p = .09; I2  = 89%), peak atrial contraction strain (SMD: 0.38; 95% CI: -0.22-0.99; p = .21; I2  = 81%), strain during atrial contraction (SMD: -0.24; 95% CI: -0.61-0.13; p = .20; I2  = 0%), strain during ventricular systole (SMD: 0.47; 95% CI: -0.32-1.27; p = .24; I2  = 89%), strain during ventricular diastole (SMD: 0.09; 95% CI: -0.32-0.51; p = .66; I2  = 65%). CONCLUSION: LAAC is associated with improvement in the left atrial emptying fraction, but did not significantly influence other parameters

    Circulating tumor DNA tracking through driver mutations as a liquid biopsy-based biomarker for uveal melanoma

    Get PDF
    © The Author(s). 2021 Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.Background: Uveal melanoma (UM) is the most common intraocular tumor in adults. Despite good primary tumor control, up to 50% of patients develop metastasis, which is lethal. UM often presents asymptomatically and is usually diagnosed by clinical examination and imaging, making it one of the few cancer types diagnosed without a biopsy. Hence, alternative diagnostic tools are needed. Circulating tumor DNA (ctDNA) has shown potential as a liquid biopsy target for cancer screening and monitoring. The aim of this study was to evaluate the feasibility and clinical utility of ctDNA detection in UM using specific UM gene mutations. Methods: We used the highly sensitive digital droplet PCR (ddPCR) assay to quantify UM driver mutations (GNAQ, GNA11, PLCβ4 and CYSTLR2) in cell-free DNA (cfDNA). cfDNA was analyzed in six well established human UM cell lines with known mutational status. cfDNA was analyzed in the blood and aqueous humor of an UM rabbit model and in the blood of patients. Rabbits were inoculated with human UM cells into the suprachoroidal space, and mutated ctDNA was quantified from longitudinal peripheral blood and aqueous humor draws. Blood clinical specimens were obtained from primary UM patients (n = 14), patients presenting with choroidal nevi (n = 16) and healthy individuals (n = 15). Results: The in vitro model validated the specificity and accuracy of ddPCR to detect mutated cfDNA from UM cell supernatant. In the rabbit model, plasma and aqueous humor levels of ctDNA correlated with tumor growth. Notably, the detection of ctDNA preceded clinical detection of the intraocular tumor. In human specimens, while we did not detect any trace of ctDNA in healthy controls, we detected ctDNA in all UM patients. We observed that UM patients had significantly higher levels of ctDNA than patients with nevi, with a strong correlation between ctDNA levels and malignancy. Noteworthy, in patients with nevi, the levels of ctDNA highly correlated with the presence of clinical risk factors. Conclusions: We report, for the first time, compelling evidence from in vitro assays, and in vivo animal model and clinical specimens for the potential of mutated ctDNA as a biomarker of UM progression. These findings pave the way towards the implementation of a liquid biopsy to detect and monitor UM tumors.info:eu-repo/semantics/publishedVersio

    Ocular Application of the Kinin B1 Receptor Antagonist LF22-0542 Inhibits Retinal Inflammation and Oxidative Stress in Streptozotocin-Diabetic Rats

    Get PDF
    Purpose: Kinin B1 receptor (B1R) is upregulated in retina of Streptozotocin (STZ)-diabetic rats and contributes to vasodilation of retinal microvessels and breakdown of the blood-retinal barrier. Systemic treatment with B 1R antagonists reversed the increased retinal plasma extravasation in STZ rats. The present study aims at determining whether ocular application of a water soluble B1R antagonist could reverse diabetes-induced retinal inflammation and oxidative stress. Methods: Wistar rats were made diabetic with STZ (65 mg/kg, i.p.) and 7 days later, they received one eye drop application of LF22-0542 (1 % in saline) twice a day for a 7 day-period. The impact was determined on retinal vascular permeability (Evans blue exudation), leukostasis (leukocyte infiltration using Fluorescein-isothiocyanate (FITC)-coupled Concanavalin A lectin), retinal mRNA levels (by qRT-PCR) of inflammatory (B1R, iNOS, COX-2, ICAM-1, VEGF-A, VEGF receptor type 2, IL-1b and HIF-1a) and anti-inflammatory (B2R, eNOS) markers and retinal level of superoxide anion (dihydroethidium staining). Results: Retinal plasma extravasation, leukostasis and mRNA levels of B 1R, iNOS, COX-2, VEGF receptor type 2, IL-1b and HIF-1a were significantly increased in diabetic retinae compared to control rats. All these abnormalities were reversed to control values in diabetic rats treated with LF22-0542. B1R antagonist also significantly inhibited the increased production of superoxide anion in diabetic retinae. Conclusion: B1R displays a pathological role in the early stage of diabetes by increasing oxidative stress and proinflammator

    Effects of DAPT and Atoh1 Overexpression on Hair Cell Production and Hair Bundle Orientation in Cultured Organ of Corti from Neonatal Rats

    Get PDF
    BACKGROUND: In mammals, hair cells do not undergo spontaneous regeneration when they are damaged and result in permanent hearing loss. Previous studies in cultured Organ of Corti dissected from neonatal animals have shown that both DAPT (r-secretase inhibitor in the Notch signal pathway) treatment and Atoh1 overexpression can induce supernumerary hair cells. The effects of simultaneous DAPT treatment and Atoh1 over expression in the cells of cultured Organ of Corti from neonatal rats are still obscure. PRINCIPAL FINDINGS: In this study, we set out to investigate the interaction of DAPT treatment and Atoh1 overexpression as well as culture time and the location of basilar fragment isolated form neonatal rat inner ear. Our results showed that DAPT treatment induced more hair cells in the apical turn, while Atoh1 overexpression induced more extra hair cells in the middle turn of the cultured Organ of Corti. When used together, their effects are additive but not synergistic. In addition, the induction of supernumerary hair cells by both DAPT and Atoh1 overexpression is dependent on the treatment time and the location of the cochlear tissue. Moreover, DAPT treatment causes dramatic changes in the orientation of the stereociliary bundles of hair cells, whereas Atoh1 overexpression didn't induce drastic change of the polarity of stereociliary bundles. CONCLUSIONS/SIGNIFICANCE: Taken together, these results suggest that DAPT treatment are much more potent in inducing supernumerary hair cells than Atoh1 overexpression and that the new hair cells mainly come from the trans-differentiation of supporting cells around hair cells. The orientation change of stereociliary bundle of hair cells may be attributed to the insertion of the newly formed hair cells. The immature hair bundles on the newly formed hair cells may also contribute to the overall chaos of the stereociliary bundle of the sensory epithelia

    Holoclone Forming Cells from Pancreatic Cancer Cells Enrich Tumor Initiating Cells and Represent a Novel Model for Study of Cancer Stem Cells

    Get PDF
    Pancreatic cancer is one of the direct causes of cancer-related death. High level of chemoresistance is one of the major obstacles of clinical treatment. In recent years, cancer stem cells have been widely identified and indicated as the origin of chemoresistance in multi-types of solid tumors. Increasing evidences suggest that cancer stem cells reside in the cells capable of forming holoclones continuously. However, in pancreatic cancer, holoclone-forming cells have not been characterized yet. Therefore, the goal of our present study was to indentify the holoclone-forming pancreatic cancer stem cells and develop an in vitro continuous colony formation system, which will greatly facilitate the study of pancreatic cancer stem cells.Pancreatic cancer cell line BxPC3 was submitted to monoclonal cultivation to generate colonies. Based on the morphologies, colonies were classified and analyzed for their capacities of secondary colony formation, long-term survival in vitro, tumor formation in vivo, and drug resistance. Flowcytometry and quantitative RT-PCR were performed to detect the expression level of cancer stem cells associated cell surface markers, regulatory genes and microRNAs in distinct types of colonies. Three types of colonies with distinct morphologies were identified and termed as holo-, mero-, and paraclones, in which only holoclones generated descendant colonies of all three types in further passages. Compared to mero- and paraclones, holoclones possessed higher capacities of long-term survival, tumor initiation, and chemoresistance. The preferential expression of cancer stem cells related marker (CXCR4), regulatory genes (BMI1, GLI1, and GLI2) and microRNAs (miR-214, miR-21, miR-221, miR-222 and miR-155) in holoclones were also highlighted.Our results indicate that the pancreatic tumor-initiating cells with high level of chemoresistance were enriched in holoclones derived from BxPC3 cell line. Generation of holoclones can serve as a novel model for studying cancer stem cells, and attribute to developing new anti-cancer drugs

    Induction of Selective Blood-Tumor Barrier Permeability and Macromolecular Transport by a Biostable Kinin B1 Receptor Agonist in a Glioma Rat Model

    Get PDF
    Treatment of malignant glioma with chemotherapy is limited mostly because of delivery impediment related to the blood-brain tumor barrier (BTB). B1 receptors (B1R), inducible prototypical G-protein coupled receptors (GPCR) can regulate permeability of vessels including possibly that of brain tumors. Here, we determine the extent of BTB permeability induced by the natural and synthetic peptide B1R agonists, LysdesArg9BK (LDBK) and SarLys[dPhe8]desArg9BK (NG29), in syngeneic F98 glioma-implanted Fischer rats. Ten days after tumor inoculation, we detected the presence of B1R on tumor cells and associated vasculature. NG29 infusion increased brain distribution volume and uptake profiles of paramagnetic probes (Magnevist and Gadomer) at tumoral sites (T1-weighted imaging). These effects were blocked by B1R antagonist and non-selective cyclooxygenase inhibitors, but not by B2R antagonist and non-selective nitric oxide synthase inhibitors. Consistent with MRI data, systemic co-administration of NG29 improved brain tumor delivery of Carboplatin chemotherapy (ICP-Mass spectrometry). We also detected elevated B1R expression in clinical samples of high-grade glioma. Our results documented a novel GPCR-signaling mechanism for promoting transient BTB disruption, involving activation of B1R and ensuing production of COX metabolites. They also underlined the potential value of synthetic biostable B1R agonists as selective BTB modulators for local delivery of different sized-therapeutics at (peri)tumoral sites

    Long Noncoding RNA-Directed Epigenetic Regulation of Gene Expression Is Associated With Anxiety-like Behavior in Mice

    Get PDF
    Background RNA-directed regulation of epigenetic processes has recently emerged as an important feature of mammalian differentiation and development. Perturbation of this regulatory system in the brain may contribute to the development of neuropsychiatric disorders. Methods RNA sequencing was used to identify changes in the experience-dependent expression of long noncoding RNAs (lncRNAs) within the medial prefrontal cortex of adult mice. Transcripts were validated by real-time quantitative polymerase chain reaction and a candidate lncRNA, Gomafu, was selected for further investigation. The functional role of this schizophrenia-related lncRNA was explored in vivo by antisense oligonucleotide-mediated gene knockdown in the medial prefrontal cortex, followed by behavioral training and assessment of fear-related anxiety. Long noncoding RNA-directed epigenetic regulation of gene expression was investigated by chromatin and RNA immunoprecipitation assays. Results RNA sequencing analysis revealed changes in the expression of a significant number of genes related to neural plasticity and stress, as well as the dynamic regulation of lncRNAs. In particular, we detected a significant downregulation of Gomafu lncRNA. Our results revealed that Gomafu plays a role in mediating anxiety-like behavior and suggest that this may occur through an interaction with a key member of the polycomb repressive complex 1, BMI1, which regulates the expression of the schizophrenia-related gene beta crystallin (Crybb1). We also demonstrated a novel role for Crybb1 in mediating fear-induced anxiety-like behavior. Conclusions Experience-dependent expression of lncRNAs plays an important role in the epigenetic regulation of adaptive behavior, and the perturbation of Gomafu may be related to anxiety and the development of neuropsychiatric disorders

    An overlooked connection: serotonergic mediation of estrogen-related physiology and pathology

    Get PDF
    BACKGROUND: In humans, serotonin has typically been investigated as a neurotransmitter. However, serotonin also functions as a hormone across animal phyla, including those lacking an organized central nervous system. This hormonal action allows serotonin to have physiological consequences in systems outside the central nervous system. Fluctuations in estrogen levels over the lifespan and during ovarian cycles cause predictable changes in serotonin systems in female mammals. DISCUSSION: We hypothesize that some of the physiological effects attributed to estrogen may be a consequence of estrogen-related changes in serotonin efficacy and receptor distribution. Here, we integrate data from endocrinology, molecular biology, neuroscience, and epidemiology to propose that serotonin may mediate the effects of estrogen. In the central nervous system, estrogen influences pain transmission, headache, dizziness, nausea, and depression, all of which are known to be a consequence of serotonergic signaling. Outside of the central nervous system, estrogen produces changes in bone density, vascular function, and immune cell self-recognition and activation that are consistent with serotonin's effects. For breast cancer risk, our hypothesis predicts heretofore unexplained observations of the opposing effects of obesity pre- and post-menopause and the increase following treatment with hormone replacement therapy using medroxyprogesterone. SUMMARY: Serotonergic mediation of estrogen has important clinical implications and warrants further evaluation
    corecore