4 research outputs found
The Genetic Architecture of Depression in Individuals of East Asian Ancestry: A Genome-Wide Association Study
Importance: Most previous genome-wide association studies (GWAS) of depression have used data from individuals of European descent. This limits the understanding of the underlying biology of depression and raises questions about the transferability of findings between populations. Objective: To investigate the genetics of depression among individuals of East Asian and European descent living in different geographic locations, and with different outcome definitions for depression. Design, Setting, and Participants: Genome-wide association analyses followed by meta-analysis, which included data from 9 cohort and case-control data sets comprising individuals with depression and control individuals of East Asian descent. This study was conducted between January 2019 and May 2021. Exposures: Associations of genetic variants with depression risk were assessed using generalized linear mixed models and logistic regression. The results were combined across studies using fixed-effects meta-analyses. These were subsequently also meta-analyzed with the largest published GWAS for depression among individuals of European descent. Additional meta-analyses were carried out separately by outcome definition (clinical depression vs symptom-based depression) and region (East Asian countries vs Western countries) for East Asian ancestry cohorts. Main Outcomes and Measures: Depression status was defined based on health records and self-report questionnaires. Results: There were a total of 194 548 study participants (approximate mean age, 51.3 years; 62.8% women). Participants included 15 771 individuals with depression and 178 777 control individuals of East Asian descent. Five novel associations were identified, including 1 in the meta-analysis for broad depression among those of East Asian descent: rs4656484 (β = -0.018, SE = 0.003, P = 4.43x10-8) at 1q24.1. Another locus at 7p21.2 was associated in a meta-analysis restricted to geographically East Asian studies (β = 0.028, SE = 0.005, P = 6.48x10-9 for rs10240457). The lead variants of these 2 novel loci were not associated with depression risk in European ancestry cohorts (β = -0.003, SE = 0.005, P = .53 for rs4656484 and β = -0.005, SE = 0.004, P = .28 for rs10240457). Only 11% of depression loci previously identified in individuals of European descent reached nominal significance levels in the individuals of East Asian descent. The transancestry genetic correlation between cohorts of East Asian and European descent for clinical depression was r = 0.413 (SE = 0.159). Clinical depression risk was negatively genetically correlated with body mass index in individuals of East Asian descent (r = -0.212, SE = 0.084), contrary to findings for individuals of European descent. Conclusions and Relevance: These results support caution against generalizing findings about depression risk factors across populations and highlight the need to increase the ancestral and geographic diversity of samples with consistent phenotyping
Multi-ancestry genome-wide association study of major depression aids locus discovery, fine mapping, gene prioritization and causal inference.
Most genome-wide association studies (GWAS) of major depression (MD) have been conducted in samples of European ancestry. Here we report a multi-ancestry GWAS of MD, adding data from 21 cohorts with 88,316 MD cases and 902,757 controls to previously reported data. This analysis used a range of measures to define MD and included samples of African (36% of effective sample size), East Asian (26%) and South Asian (6%) ancestry and Hispanic/Latin American participants (32%). The multi-ancestry GWAS identified 53 significantly associated novel loci. For loci from GWAS in European ancestry samples, fewer than expected were transferable to other ancestry groups. Fine mapping benefited from additional sample diversity. A transcriptome-wide association study identified 205 significantly associated novel genes. These findings suggest that, for MD, increasing ancestral and global diversity in genetic studies may be particularly important to ensure discovery of core genes and inform about transferability of findings
Identification of common genetic risk variants for autism spectrum disorder
Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD
Multi-ancestry genome-wide association study of major depression aids locus discovery, fine mapping, gene prioritization and causal inference.
Most genome-wide association studies (GWAS) of major depression (MD) have been conducted in samples of European ancestry. Here we report a multi-ancestry GWAS of MD, adding data from 21 cohorts with 88,316 MD cases and 902,757 controls to previously reported data. This analysis used a range of measures to define MD and included samples of African (36% of effective sample size), East Asian (26%) and South Asian (6%) ancestry and Hispanic/Latin American participants (32%). The multi-ancestry GWAS identified 53 significantly associated novel loci. For loci from GWAS in European ancestry samples, fewer than expected were transferable to other ancestry groups. Fine mapping benefited from additional sample diversity. A transcriptome-wide association study identified 205 significantly associated novel genes. These findings suggest that, for MD, increasing ancestral and global diversity in genetic studies may be particularly important to ensure discovery of core genes and inform about transferability of findings
