12 research outputs found

    Classification and Energetics of the Base-Phosphate Interactions in RNA

    Get PDF
    Structured RNA molecules form complex 3D architectures stabilized by multiple interactions involving the nucleotide base, sugar and phosphate moieties. A significant percentage of the bases in structured RNA molecules in the Protein Data Bank (PDB) hydrogen-bond with phosphates of other nucleotides. By extracting and superimposing base-phosphate (BPh) interactions from a reduced-redundancy subset of 3D structures from the PDB, we identified recurrent phosphate-binding sites on the RNA bases. Quantum chemical calculations were carried out on model systems representing each BPh interaction. The calculations show that the centers of each cluster obtained from the structure superpositions correspond to energy minima on the potential energy hypersurface. The calculations also show that the most stable phosphate-binding sites occur on the Watson-Crick edge of guanine and the Hoogsteen edge of cytosine. We modified the \u27Find RNA 3D\u27 (FR3D) software suite to automatically find and classify BPh interactions. Comparison of the 3D structures of the 16S and 23S rRNAs of Escherichia coli and Thermus thermophilus revealed that most BPh interactions are phylogenetically conserved and they occur primarily in hairpin, internal or junction loops or as part of tertiary interactions. Bases that form BPh interactions, which are conserved in the rRNA 3D structures are also conserved in homologous rRNA sequence alignments

    Classification and energetics of the base-phosphate interactions in RNA

    Get PDF
    Structured RNA molecules form complex 3D architectures stabilized by multiple interactions involving the nucleotide base, sugar and phosphate moieties. A significant percentage of the bases in structured RNA molecules in the Protein Data Bank (PDB) hydrogen-bond with phosphates of other nucleotides. By extracting and superimposing base-phosphate (BPh) interactions from a reduced-redundancy subset of 3D structures from the PDB, we identified recurrent phosphate-binding sites on the RNA bases. Quantum chemical calculations were carried out on model systems representing each BPh interaction. The calculations show that the centers of each cluster obtained from the structure superpositions correspond to energy minima on the potential energy hypersurface. The calculations also show that the most stable phosphate-binding sites occur on the Watson–Crick edge of guanine and the Hoogsteen edge of cytosine. We modified the ‘Find RNA 3D' (FR3D) software suite to automatically find and classify BPh interactions. Comparison of the 3D structures of the 16S and 23S rRNAs of Escherichia coli and Thermus thermophilus revealed that most BPh interactions are phylogenetically conserved and they occur primarily in hairpin, internal or junction loops or as part of tertiary interactions. Bases that form BPh interactions, which are conserved in the rRNA 3D structures are also conserved in homologous rRNA sequence alignments

    Classification and energetics of the base-phosphate interactions in RNA

    Get PDF
    Structured RNA molecules form complex 3D architectures stabilized by multiple interactions involving the nucleotide base, sugar and phosphate moieties. A significant percentage of the bases in structured RNA molecules in the Protein Data Bank (PDB) hydrogen-bond with phosphates of other nucleotides. By extracting and superimposing base-phosphate (BPh) interactions from a reduced-redundancy subset of 3D structures from the PDB, we identified recurrent phosphate-binding sites on the RNA bases. Quantum chemical calculations were carried out on model systems representing each BPh interaction. The calculations show that the centers of each cluster obtained from the structure superpositions correspond to energy minima on the potential energy hypersurface. The calculations also show that the most stable phosphate-binding sites occur on the Watson–Crick edge of guanine and the Hoogsteen edge of cytosine. We modified the ‘Find RNA 3D' (FR3D) software suite to automatically find and classify BPh interactions. Comparison of the 3D structures of the 16S and 23S rRNAs of Escherichia coli and Thermus thermophilus revealed that most BPh interactions are phylogenetically conserved and they occur primarily in hairpin, internal or junction loops or as part of tertiary interactions. Bases that form BPh interactions, which are conserved in the rRNA 3D structures are also conserved in homologous rRNA sequence alignments

    Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process

    Get PDF
    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange

    Meteorite‐Assisted Phosphorylation of Adenosine Under Proton Irradiation Conditions

    No full text
    The abiotic phosphorylation of nucleosides is a major hurdle in origin-of-life studies. We suggest a plausible pathway for the synthesis of adenosine nucleotides from adenosine and NaH2PO4 under radiative conditions mimicking the solar wind in the presence of a meteorite of the aubrite-type. Hydroxyapatite also performed as a mineral heterogeneous phosphorus source. Adenosine polyphosphate derivatives and inorganic polyphosphates were detected in the reaction mixture, highlighting the high reactivity of the system. Both the total yield of adenosine nucleotides and the conversion of adenosine increased upon performing the irradiation in the presence of formamide (NH2CHO) and aubrite. These experiments simulate conditions in space or on an early Earth fluxed by protons from the solar wind, potentially mimicking a plausible prebiotic phosphorylation scenario.1

    How Proximal Nucleobases Regulate the Catalytic Activity of G-Quadruplex/Hemin DNAzymes

    No full text
    International audienceG-quadruplexes (G4s) are versatile catalytic DNAs when combined with hemin. Despite the repertoire of catalytically competent G4/hemin complexes studied so far, little is known about the detailed catalytic mechanism of these biocatalysts. Herein, we have carried out an in-depth analysis of the hemin binding site within the G4/hemin catalysts, providing the porphyrinic cofactor with a controlled nucleotidic environment. We intensively assessed the position-dependent catalytic enhancement in model reactions and found that proximal nucleobases enhance the catalytic ability of the G4/hemin complexes. Our results allow for revisiting the mechanism of the G4/hemin-based catalysis, especially gaining insights into the rate-limiting step, demonstrating how both the G4 core and the proximal nucleotides dA and/or dC concomitantly activate the Compound 0 → 0* prototropic cleavage of H 2 O 2 to foster Compound 1 formation. These results provide mechanistic clues as to how the properties of G4-based catalysts can be improved to ultimately make them competitive with proteinaceous enzymes

    Elbow Flexibility of the kt38 RNA Kink-Turn Motif Investigated by Free-Energy Molecular Dynamics Simulations

    Get PDF
    Kink-turns (K-turns) are common structural motifs that can introduce sharp kinks into double-stranded RNA, and have been proposed to mediate large-scale motions in the ribosome. K-turns consist of a bulge loop region flanked by trans sugar-Hoogsteen G:A pairs, and the sharp kink conformation is stabilized by A-minor interactions (adenine contacting a G:C basepair in the minor groove). Umbrella-sampling molecular dynamics simulations were used to disrupt an A-minor interaction in the ribosomal kt38 turn and to calculate the associated free-energy change. Coupling of umbrella sampling with replica exchanges between neighboring umbrella-sampling intervals could further improve the convergence of the free-energy calculations. The simulations revealed a coupled A-minor disruption and global opening of the K-turn motif, and allowed us to characterize several intermediate A-minor conformations. The calculated free-energy profile indicated a meta-stable, semi-open structure of slightly higher free energy (∼1 kcal mol−1), separated by a small free-energy barrier (∼1.5 kcal mol−1) from the closed (highly kinked) form. Both K-turn states are stabilized by distinct variants of the A-minor interaction. Further opening of the K-turn structure required significantly larger free-energy changes. The semi-open form had a reduced kink angle compatible with experimental data on K-turn solution structures, and opening was coupled to a continuous global unwinding of the K-turn motif. The range of free-energy changes associated with kt38 opening and unwinding are compatible with the idea that K-turns may facilitate biologically relevant motions during large-scale ribosome dynamics

    Conformational Dynamics of the Human Propeller Telomeric DNA Quadruplex on a Microsecond Time Scale

    Get PDF
    The human telomeric DNA sequence with four repeats can fold into a parallel-stranded propeller-type topology. NMR structures solved under molecular crowding experiments correlate with the crystal structures found with crystal-packing interactions that are effectively equivalent to molecular crowding. This topology has been used for rationalization of ligand design and occurs experimentally in a number of complexes with a diversity of ligands, at least in the crystalline state. Although G-quartet stems have been well characterized, the interactions of the TTA loop with the G-quartets are much less defined. To better understand the conformational variability and structural dynamics of the propeller-type topology, we performed molecular dynamics simulations in explicit solvent up to 1.5 μs. The analysis provides a detailed atomistic account of the dynamic nature of the TTA loops highlighting their interactions with the G-quartets including formation of an A:A base pair, triad, pentad and hexad. The results present a threshold in quadruplex simulations, with regards to understanding the flexible nature of the sugar-phosphate backbone in formation of unusual architecture within the topology. Furthermore, this study stresses the importance of simulation time in sampling conformational space for this topology
    corecore