34 research outputs found

    Metabolic adaptation of a Chlamydomonas acidophila strain isolated from acid mine drainage ponds with low eukaryotic diversity

    Get PDF
    © 2018 Elsevier B.V. The diversity and biological characteristics of eukaryotic communities within acid mine drainage (AMD) sites is less well studied than for prokaryotic communities. Furthermore, for many eukaryotic extremophiles the potential mechanisms of adaptation are unclear. This study describes an evaluation of eight highly acidic (pH 1.6–3.1) and one moderately acidic (pH 5.6) metal-rich acid mine drainage ponds at a disused copper mine. The severity of AMD pollution on eukaryote biodiversity was examined, and while the most species-rich site was less acidic, biodiversity did not only correlate with pH but also with the concentration of dissolved and particulate metals. Acid-tolerant microalgae were present in all ponds, including the species Chlamydomonas acidophila, abundance of which was high in one very metal-rich and highly acidic (pH 1.6) pond, which had a particularly high PO4-P concentration. The C. acidophila strain named PM01 had a broad-range pH tolerance and tolerance to high concentrations of Cd, Cu and Zn, with bioaccumulation of these metals within the cell. Comparison of metal tolerance between the isolated strain and other C. acidophila strains previously isolated from different acidic environments found that the new strain exhibited much higher Cu tolerance, suggesting adaptation by C. acidophila PM01 to excess Cu. An analysis of the metabolic profile of the strains in response to increasing concentrations of Cu suggests that this tolerance by PM01 is in part due to metabolic adaptation and changes in protein content and secondary structure

    Recent Developments in Microbiological Approaches for Securing Mine Wastes and for Recovering Metals from Mine Waters

    Get PDF
    Mining of metals and coals generates solid and liquid wastes that are potentially hazardous to the environment. Traditional methods to reduce the production of pollutants from mining and to treat impacted water courses are mostly physico-chemical in nature, though passive remediation of mine waters utilizes reactions that are catalysed by microorganisms. This paper reviews recent advances in biotechnologies that have been proposed both to secure reactive mine tailings and to remediate mine waters. Empirical management of tailings ponds to promote the growth of micro-algae that sustain populations of bacteria that essentially reverse the processes involved in the formation of acid mine drainage has been proposed. Elsewhere, targeted biomineralization has been demonstrated to produce solid products that allow metals present in mine waters to be recovered and recycled, rather than to be disposed of in landfill

    Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles

    Get PDF
    Two acidophilic algae, identified as strains of Chlorella protothecoides var. acidicola and Euglena mutabilis, were isolated in pure culture from abandoned copper mines in Spain and Wales and grown in pH- and temperature-controlled bioreactors. The Chlorella isolate grew optimally at pH 2.5 and 30 ˚C, with a corresponding culture doubling time of 9 hours. The isolates displayed similar tolerance (10-50 mM) to four transition metals tested. Growth of the algae in liquid media was paralleled with increasing concentrations of dissolved organic carbon (DOC). Glycolic acid was identified as a significant component (12- 14%) of total DOC. Protracted incubation resulted in concentrations of glycolic acid declining in both cases, and glycolic acid added to a culture of Chlorella incubated in the dark was taken up by the alga (~100% within three days). Two monosaccharides were identified in cell-free liquors of each algal isolate: fructose and glucose (Chlorella), and mannitol and glucose (Euglena). These were rapidly metabolised by acidophilic heterotrophic bacteria (Acidiphilium and Acidobacterium spp.) though only fructose was utilised by the more fastidious heterotroph Acidocella aromatica. The significance of algae in promoting the growth of iron- (and sulfate-) reducing heterotrophic acidophiles that are important in remediating mine-impacted waters is discussed

    Dissimilatory reduction of sulfate and zero-valent sulfur at low pH and its significance for bioremediation and metal recovery

    No full text
    Redox transformations of sulfur, involving dissimilatory and assimilatory oxidation and reduction reactions, occurs in water bodies and terrestrial environments worldwide, leading to dynamic cycling of this element throughout the biosphere. In cases where zero-valent (elemental) sulfur, sulfate and other oxidized forms are used as electron acceptor in (primarily) anaerobic microbial metabolisms, the end product is hydrogen sulfide (HS− or H2S, dependent on pH). While neutrophilic and alkalophilic sulfidogenic prokaryotes have been known for many decades, acid-tolerant and acidophilic strains and species have been isolated and characterized only in the past twenty or so years, even though evidence for sulfide generation on these environments was previously well documented. This review outlines the background and current status of the biodiversity and metabolisms of sulfate- and sulfur-reducing prokaryotes that are metabolically active in low pH environments, and describes the developing technologies in which they are being used to remediate acidic waste waters (which are often metal-contaminated) and to recover metal resources.</p
    corecore