19 research outputs found

    Phosphorus pools and internal loading in a eutrophic lake with gradients in sediment geochemistry created by land use in the watershed

    Get PDF
    Spatial variations in phosphorus (P) fractionation, sediment geochemistry, and sorptive properties for P are assessed to test the hypothesis that these sediment properties vary within the lake and are governed by different land uses in the watershed. The dynamic equilibrium between P in sediment and water is investigated using sorption–desorption isotherms. Sediments in the littoral zone were rich in iron (Fe), aluminium (Al), and clay material in comparison to sediments from the lake proper and thus had better abilities to sorb and retain P. In the limnetic zone, there was an increasing abundance of primary minerals, and the fraction of apatite-P was high, while the level of total P was low. The amount of labile adsorbed P (LAP) in the littoral sediments varied because of contrasting land use in the sub-catchments draining into different parts of the lake. Sediments in areas where forest streams enter the lake contained significantly more LAP than sediments in areas impacted by agricultural influenced streams. Internal P loading from sediments predominantly originating from forest streams is mainly governed by sediment resuspension. The dominant P pool in sediments near the inlets of agriculturally influenced streams was non-apatite inorganic P, of which the Fe-bound is a potentially important source of P under anoxic conditions. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited

    Characterizing nutrient distributions and fluxes in a eutrophic reservoir, Midwestern United States

    No full text
    Harmful algal blooms are increasingly common in aquatic ecosystems and have been linked to runoff from agricultural land. This study investigated the internal nutrient (i.e., phosphorus (P) and nitrogen (N)) dynamics of a eutrophic reservoir in the Midwestern United States to constrain the potential for sedimentary nutrients to stimulate harmful algal blooms. The spatial distribution of nutrients in the water column (soluble reactive P (SRP), nitrate/nitrite-N (NOx-N), and ammonium-N (NH4+-N)) and sediments (total P, total carbon (C), total N, and organic matter (OM)) were quantified and mapped. Water column nutrients varied spatially and temporally, with generally higher concentrations near the dam wall during normal lake levels. The upper portion of the lake, near the inlet, was sampled during a flood event and had overall higher nutrient concentrations and lower chlorophyll levels compared to normal lake level samples. Mean sedimentary total P (936 mg/kg) was ~ 30% higher in the reservoir than the surrounding upland soils, with the highest concentrations near the dam wall (1661 mg/kg) and a significant positive correlation found between sedimentary total P, total C, and OM. Additionally, 15 intact sediment cores were manipulated ex situ to examine mechanisms of nutrient flux across the sediment-water interface (SWI) that may trigger algal blooms. Core treatment conditions included advection (i.e., simulating potential nutrient fluxes during wind events through sediment resuspension) and diffusion. Core experiments indicated both advective and diffusive conditions at the SWI may trigger the flux of nutrients important for algal growth from lake sediments, with diffusion contributing both N and P to the water column, while intense advection increased water column N, but decreased P. Release of P to the water column may be more diffusion-driven than advection-driven, whereas N release to the water column appears to be both diffusion- and advection-driven
    corecore