605 research outputs found

    Topologically massive gravity as a Pais-Uhlenbeck oscillator

    Get PDF
    We give a detailed account of the free field spectrum and the Newtonian limit of the linearized "massive" (Pauli-Fierz), "topologically massive" (Einstein-Hilbert-Chern-Simons) gravity in 2+1 dimensions about a Minkowski spacetime. For a certain ratio of the parameters, the linearized free theory is Jordan-diagonalizable and reduces to a degenerate "Pais-Uhlenbeck" oscillator which, despite being a higher derivative theory, is ghost-free.Comment: 9 pages, no figures, RevTEX4; version 2: a new paragraph and a reference added to the Introduction, a new appendix added to review Pais-Uhlenbeck oscillators; accepted for publication in Class. Quant. Gra

    Weak antilocalization and zero-field electron spin splitting in AlGaN/AlN/GaN heterostructures with a polarization induced two-dimensional electron gas

    Get PDF
    Spin-orbit coupling is studied using the quantum interference corrections to conductance in AlGaN/AlN/GaN two-dimensional electron systems where the carrier density is controlled by the persistent photoconductivity effect. All the samples studied exhibit a weak antilocalization feature with a spin-orbit field of around 1.8 mT. The zero-field electron spin splitting energies extracted from the weak antilocalization measurements are found to scale linearly with the Fermi wavevector with an effective linear spin-orbit coupling parameter 5.5x10^{-13} eV m. The spin-orbit times extracted from our measurements varied from 0.74 to 8.24 ps within the carrier density range of this experiment.Comment: 16 pages, 4 figure

    Two-Frequency Jahn-Teller Systems in Circuit QED

    Get PDF
    We investigate the simulation of Jahn-Teller models with two non-degenerate vibrational modes using a circuit QED architecture. Typical Jahn-Teller systems are anisotropic and require at least a two-frequency description. The proposed simulator consists of two superconducting lumped-element resonators interacting with a common flux qubit in the ultrastrong coupling regime. We translate the circuit QED model of the system to a two-frequency Jahn-Teller Hamiltonian and calculate its energy eigenvalues and the emission spectrum of the cavities. It is shown that the system can be systematically tuned to an effective single mode Hamiltonian from the two-mode model by varying the coupling strength between the resonators. The flexibility in manipulating the parameters of the circuit QED simulator permits isolating the effective single frequency and pure two-frequency effects in the spectral response of Jahn-Teller systems.Comment: 8 pages, 4 figures, figures revise

    Generalized Timelike Mannheim Curves in Minkowski space-time E14E_1^4

    Get PDF
    We give a definition of generalized timelike Mannheim curve in Minkowski space-time E14E_1^4. The necessary and sufficient conditions for the generalized timelike Mannheim curve obtain. We show some characterizations of generalized Mannheim curve

    Growth and reproduction studies on gilthead seabream (Sparus aurata) in Beymelek Lagoon, Turkey

    Get PDF
    In the present study, age, growth, length-weight relationship and reproduction were investigated in gilthead seabream (Sparus aurata L., 1758) collected from Beymelek Lagoon (Antalya, Turkey) between February 2006 and July 2007. The age, total length and weight of samples ranged from 0+ to 4 years, 10.6 to 35.5cm, and 18 to 928g, respectively. Growth was described by the standard form of the von Bertalanffy growth equation and the estimated parameters were L∞ = 44.6cm, k = 0.394yr^-1 and t0 = -1.331yr. Length-weight relationship was determined as W=0.0174TL^2.9769 (R^2=0.965), and weight increased with size isometrically (b = 2.9769) for all fish. Sex inversion occurred mainly at 26 cm in total length and females reached sexual maturity at 28.5 cm. The spawning period was from December to February, while the gamete emission peaked in December

    A new perspective on the competitiveness of nations

    Get PDF
    The capability of firms to survive and to have a competitive advantage in global markets depends on, amongst other things, the efficiency of public institutions, the excellence of educational, health and communications infrastructures, as well as on the political and economic stability of their home country. The measurement of competitiveness and strategy development is thus an important issue for policy-makers. Despite many attempts to provide objectivity in the development of measures of national competitiveness, there are inherently subjective judgments that involve, for example, how data sets are aggregated and importance weights are applied. Generally, either equal weighting is assumed in calculating a final index, or subjective weights are specified. The same problem also occurs in the subjective assignment of countries to different clusters. Developed as such, the value of these type indices may be questioned by users. The aim of this paper is to explore methodological transparency as a viable solution to problems created by existing aggregated indices. For this purpose, a methodology composed of three steps is proposed. To start, a hierarchical clustering analysis is used to assign countries to appropriate clusters. In current methods, country clustering is generally based on GDP. However, we suggest that GDP alone is insufficient for purposes of country clustering. In the proposed methodology, 178 criteria are used for this purpose. Next, relationships between the criteria and classification of the countries are determined using artificial neural networks (ANNs). ANN provides an objective method for determining the attribute/criteria weights, which are, for the most part, subjectively specified in existing methods. Finally, in our third step, the countries of interest are ranked based on weights generated in the previous step. Beyond the ranking of countries, the proposed methodology can also be used to identify those attributes that a given country should focus on in order to improve its position relative to other countries, i.e., to transition from its current cluster to the next higher one

    Photoresponse of n-ZnO∕p-SiC heterojunction diodes grown by plasma-assisted molecular-beam epitaxy

    Get PDF
    High quality n-ZnOfilms on commercial p-type 6H–SiC substrates have been grown by plasma-assisted molecular-beam epitaxy, and n-ZnO∕p-SiCheterojunction mesa structures have been fabricated. Current-voltage characteristics of the structures had a very good rectifying diode-like behavior with a leakage current less than 2×10−4A/cm2 at −10V, a breakdown voltage greater than 20V, a forward turn on voltage of ∼5V, and a forward current of ∼2A/cm2 at 8V. Photosensitivity of the diodes was studied at room temperature and a photoresponsivity of as high as 0.045A∕W at −7.5V reverse bias was observed for photonenergies higher than 3.0eV

    A comprehensive review of ZnO materials and devices

    Get PDF
    The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60 meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev.142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys.6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. Lett.16, 439 (1970)]. In terms of devices, Au Schottky barriers in 1965 by Mead [Phys. Lett.18, 218 (1965)], demonstration of light-emitting diodes (1967) by Drapak [Semiconductors 2, 624 (1968)], in which Cu2O was used as the p-type material, metal-insulator-semiconductor structures (1974) by Minami et al. [Jpn. J. Appl. Phys.13, 1475 (1974)], ZnO∕ZnSe n-p junctions (1975) by Tsurkan et al. [Semiconductors 6, 1183 (1975)], and Al∕Au Ohmic contacts by Brillson [J. Vac. Sci. Technol.15, 1378 (1978)] were attained. The main obstacle to the development of ZnO has been the lack of reproducible and low-resistivity p-type ZnO, as recently discussed by Look and Claflin [Phys. Status Solidi B241, 624 (2004)]. While ZnO already has many industrial applications owing to its piezoelectric properties and band gap in the near ultraviolet, its applications to optoelectronic devices has not yet materialized due chiefly to the lack of p-type epitaxial layers. Very high quality what used to be called whiskers and platelets, the nomenclature for which gave way to nanostructures of late, have been prepared early on and used to deduce much of the principal properties of this material, particularly in terms of optical processes. The suggestion of attainment of p-type conductivity in the last few years has rekindled the long-time, albeit dormant, fervor of exploiting this material for optoelectronic applications. The attraction can simply be attributed to the large exciton binding energy of 60 meV of ZnO potentially paving the way for efficient room-temperature exciton-based emitters, and sharp transitions facilitating very low threshold semiconductor lasers. The field is also fueled by theoretical predictions and perhaps experimental confirmation of ferromagnetism at room temperature for potential spintronics applications. This review gives an in-depth discussion of the mechanical, chemical, electrical, and optical properties of ZnO in addition to the technological issues such as growth, defects, p-type doping, band-gap engineering, devices, and nanostructures

    First results of the Kourovka Planet Search: discovery of transiting exoplanet candidates in the first three target fields

    Full text link
    We present the first results of our search for transiting exoplanet candidates as part of the Kourovka Planet Search (KPS) project. The primary objective of the project is to search for new hot Jupiters which transit their host stars, mainly in the Galactic plane, in the RcR_c magnitude range of 11 to 14 mag. Our observations were performed with the telescope of the MASTER robotic network, installed at the Kourovka astronomical observatory of the Ural Federal University (Russia), and the Rowe-Ackermann Schmidt Astrograph, installed at the private Acton Sky Portal Observatory (USA). As test observations, we observed three celestial fields of size 2×22\times2 deg2^2 during the period from 2012 to 2015. As a result, we discovered four transiting exoplanet candidates among the 39000 stars of the input catalogue. In this paper, we provide the description of the project and analyse additional photometric, spectral, and speckle interferometric observations of the discovered transiting exoplanet candidates. Three of the four transiting exoplanet candidates are most likely astrophysical false positives, while the nature of the fourth (most promising) candidate remains to be ascertained. Also, we propose an alternative observing strategy that could increase the project's exoplanet haul.Comment: 11 pages, 16 figures; Accepted for publication in Monthly Notices of the Royal Astronomical Society 201
    corecore