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We investigate the simulation of Jahn-Teller models with two nondegenerate vibrational modes using a circuit
QED architecture. Typical Jahn-Teller systems are anisotropic and require at least a two-frequency description.
The proposed simulator consists of two superconducting lumped-element resonators interacting with a common
flux qubit in the ultrastrong coupling regime. We translate the circuit QED model of the system to a two-frequency
Jahn-Teller Hamiltonian and calculate its energy eigenvalues and the emission spectrum of the cavities. It is shown
that the system can be systematically tuned to an effective single-mode Hamiltonian from the two-mode model
by varying the coupling strength between the resonators. The flexibility in manipulating the parameters of the
circuit QED simulator permits the isolation of the effective single-frequency and pure two-frequency effects in

the spectral response of Jahn-Teller systems.
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I. INTRODUCTION

Simulating complex physical phenomena using systems
that offer precise control of physical interactions, such as
ultracold atoms [1], Bose-Einstein condensates [2,3], and
trapped ions [4], has attracted much attention in the last
decade. It has recently been shown that cavity QED systems
can be utilized for the same purpose, in particular to simulate
certain gauge potentials, the anomalous Hall effect, and the
Dirac equation [5]. The potential use of cavity QED systems
to simulate such physical models relies on the successful
simulation of Jahn-Teller (JT) interactions [6—8] which require
atom-photon ultrastrong coupling conditions [9].

JT models describe the interaction of localized electronic
states with vibrational (phonon) modes in crystals or in
molecules [10]. Cavity QED systems that simulate single-
mode JT models have been already proposed [11]. On the other
hand, many practical systems need a description in terms of
multimode JT interactions [12—16]. We address the question of
how to generalize the restrictive single-mode simulation of JT
systems to two-mode JT interactions within the circuit QED
context.

Circuit QED [17] offers the possibility of operating in the
ultrastrong coupling regime [ 18—23] for efficient JT and related
spin-boson or Dicke model simulations. Photonic waveguide
arrays are alternatively proposed [24] for reaching the deep
ultrastrong coupling regime (DSC) [25] of JT-type light-matter
interaction.

Our idea is to consider a system consisting of a two-level
atom simultaneously interacting with two cavities coupled to
each other, rather than with a degenerate two-mode cavity,
which was considered for the cylindrically symmetric E X €
JT model in cavity QED [11]. In terms of the normal modes
of the coupled cavities, our system allows the simulation of a
two-frequency (two nondegenerate vibrational normal modes)
E x (81 + B2) JT model [10]. The normal modes of the two
coupled cavities consist of a high-frequency component and a
low-frequency component. The coupling strength between the
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cavities can be utilized to alter the frequency ratio of the modes
to simulate different frequency ratios encountered in different
JT impurities in solids [26]. In addition to more realistic sim-
ulations of JT systems, establishing a link between multimode
JT models and coupled circuit QED systems could enable the
exploration of many-body physics, such as quantum chaos
[13,14], quantum phase transitions [15], and quantum entan-
glement in JT systems [23,27], by using coupled cavity arrays.

We consider a coupled circuit QED [17,28-32] system
in the ultrastrong coupling regime as a feasible platform on
which to realize our idea. The system consists of two coupled
lumped-element LC resonators interacting with a two-level
artificial atom, a superconducting flux qubit. In the ultrastrong
coupling regime the rotating-wave approximation is not valid,
so that the qubit-resonator coupling is of JT type rather than
Jaynes-Cummings type [21,23], allowing strongly coupled
multifrequency JT systems to be simulated. The switchable
ultrastrong coupling architecture can also be applied if a
tunable coupling strength between the resonators and the flux
qubit is desired [33].

Typical treatments of strongly coupled multimode JT
systems in chemistry or in condensed matter physics utilize
a cluster model [34] or use an effective single-mode model
where most of the JT interaction energy is concentrated
predominantly upon a single effective vibrational frequency
with a negligible spread (narrow range of frequencies) [35].
These methods are especially used for interpreting effects
associated with low energy states, such as those seen in
low-temperature optical absorption [36].

When the frequency difference between the two modes is
large, the situation is analogous to the case of optical and
acoustic phonons in solids for which perturbative corrections
become significant. We show that the frequency separation of
the modes over which the JT interaction is distributed can be
tuned with the coupling strength between the resonators. Our
coupled circuit QED proposal allows for systematic simulation
of effective single-mode and pure two-mode effects as well as
transitions between these regimes.

This manuscript is organized as follows. In Sec. II we intro-
duce the two-mode JT model and its implementation in a circuit
QED context. The effective single-mode treatment is described
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in Sec. III. In Sec. IV, the experimental implementation is
laid out. The results and discussions are presented in Sec. V.
Finally, we give conclusions in Sec. VI.

II. TWO-FREQUENCY JT SYSTEMS IN CAVITY
AND CIRCUIT QED

When two electronic levels are coupled to vibrations of
ions or atoms in solids and molecules, the general form of the
interaction can be written as Hyr = f (Q) - &, where f (Q)is
a vector valued function of vibrational coordinates while o is
the vector of the Pauli spin matrices. Such interactions are in
general called Jahn-Teller interactions [10]. In this paper, we
focus on a particular one of the form (Q, + Q2.)0y, Which
is known as the E x (81 + B,) JT (or Herzberg-Teller) model.
Our aim is to generalize the recently discussed simulation
of the single-mode E x € JT model in cavity QED [11,37],
which is of the form Q,0, + Q,0,, to the two-frequency case.
Our choice of E x (B; + B,) is the simplest possible two-
frequency JT model. The implementation of E x (8; + $2)
model allows the simulation of realistic crystals that exhibit
spatial anisotropy. The single-boson E x 8 model is formally
equivalent to the Dicke model, and signatures of quantum
chaos have been discussed in the E x (8; + f2) model
recently [15].

The Hamiltonian corresponding to the multifrequency JT
interaction between a single impurity ion and many vibrational
degrees of freedom of the host lattice (or molecule) is
expressed as

H = Hpy, + Hyr, (1)

where Hyp, describes the free Hamiltonian of the phonon modes
at frequencies w;

Hpw =Y hoi(alay). )

where &i(&;[) are the annihilation (creation) operators of
the phonons. The multi-mode JT interaction describes the
coupling of the single ion to the vibrational modes

Hpp =Y hoiki(@ +a)V. (3)

Here k; are the dimensionless scaling factors of the JT coupling
coefficients and V is an operator that depends on the electronic
degrees of freedom of the impurity ion.

We wish to simulate this multimode JT interaction using
a coupled two-resonator circuit QED system. Normal modes
of the coupled microwave photons play the role of phonons,
while a flux qubit plays the role of the impurity ion. The
interaction of the flux qubit in the two-resonator circuit
QED system mimics the local (short-range) interaction of the
ion-phonon coupling. On the other hand, there is an additional
nonlocal (long-range) coupling between the resonator modes,
describing hopping of photons between the resonators in the
circuit QED system which mimics the coupling between the vi-
brational phonons. The coupled resonator model can be written
as(h=1)

H = H, + H. + Hyc + H, “4)
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where
Q
Hq = EO‘Z, (5)
H. = Q]&J{&l + 92&;&2» (6)
Hqc = [)\,1(&1——%&1)"_)\2(&;"—&2)]0‘)(7 (7)
He = J(d1dy + da'dy), (®)

where o, and o, = oy + o_ are the Pauli spin operators
describing the qubit degrees of freedom with € being the
qubit transition frequency, €2;, the resonance frequencies
of the cavity modes, J the hopping rate of microwave
photons between the resonators, and &1,2(&;2) the annihilation
(creation) operators for the cavity photons. We want to simulate
the two-frequency JT model in Eq. (1) with the two-resonator
circuit QED model in Eq. (4). For that aim it is necessary to
be able to transform one model to the other and show that
they are identical for a certain set of model parameters. In the
next section we examine the transformation between these
two Hamiltonians. We apply the so-called effective single
privileged mode transformation that has been developed for
multifrequency JT systems [35] that allows for systematic
analysis of pure single- and multifrequency effects.

III. EFFECTIVE SINGLE-MODE JT SYSTEM
IN TWO-RESONATOR CIRCUIT QED

We now employ the effective single-mode treatment [35]
for the two-frequency JT model obtained within the two-
resonator circuit QED context. Toward that aim, we look for
a particular linear superposition of the normal modes of the
coupled resonators,

& =) Audy. ©)
k

where A;; are the elements of a real orthogonal matrix to be
determined, such that most of the JT energy is concentrated
over a privileged mode among the set of new bosonic
modes &;.

Without loss of generality, we choose the privileged mode
as & for which the single-mode model JT system can be
written in terms of an effective frequency wes and an effective
JT coupling ks, scaled by we, So that

Q
Her = DA + weff[&I&l + k(61 + &I)V]- (10)

The relevant elements of the transformation, A;; and Ay,
are determined by maximizing kZ;wef. This is the amount by
which the minimum of the potential energy of the system is
lowered, under adiabatic approximation, due to the interaction
of the rest of the system with such a single mode [35]. This
gives A : Ajp = kj : ko, subject to normalization conditions.
Direct substitution of Eq. (9) into Eq. (1) yields

; (1)

ki = k3 + k3. (12)

053841-2



TWO-FREQUENCY JAHN-TELLER SYSTEMS IN CIRCUIT QED

For a 2 x 2 orthogonal matrix A, determining the first
row of elements fixes the remaining two by orthonormality
conditions such that

1 k k
A:—( ! 2 )7
ket \ka —ki

which is taken in consistency with Ref. [35]. Such transfor-
mations are common in Morris-Shore bright- and dark-state
transformations [38].For the system analyzed here, on the
contrary, there is no perfect decoupling of either mode from
the dynamics of the rest of the system, though for certain
parameter regimes the modes &; and &, become approximately
decoupled. The total transformed Hamiltonian can be written
as

13)

I:Isys = Her + Héh + Hin, (14)
where
H)y = 0/'dl (15)
with
k2 k?
o = Atk (16)

ke
is the free Hamiltonian of the disadvantaged effective mode.

The interaction of this mode with the rest of the system is
described by

Hiy = e[(@lén + 618)) + k(@ + @D V1. (17)

Here the strength of the coupling between the privileged and
the disadvantaged modes is characterized by the parameter

kik
ey = A2

(18)
where A = w; — w, is the frequency difference between
the vibration modes in the two-frequency JT model. If
the vibrational modes are degenerate, the model is exactly
equivalent to the case of an effective single frequency. The
coupling between the JT vibration modes can also be expressed
as ¢? = w? — @*, where

—_ a)’l’kl2 + a)’zlkg
k? + k3

This allows for interpreting ¢, as the mean square width of
that distribution with a mean @ = wegr [35].

The effect of H;i,: on the effective single-mode model can
be examined perturbatively provided that the frequency spread
(A or ¢y) is not too large. Perturbative effects will only be
significant on the JT ground state starting from second order.
To see this it is convenient to introduce a new set of operators
[35]

19)

l=a +keV, (20)
for which we can reexpress the effective model as
Hetr = 0t 1) — otk V2. 21

The last term is proportional to the unit matrix. 77 obeys
bosonic commutation rules even though it contains Pauli
spin operators. This operator can be identified as a “bright”
qubit-polariton quasiparticle. The first term in the effective
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Hamiltonain is then a harmonic oscillator contribution due
to the free energy of these quasiparticles. The interaction
Hamiltonian becomes

Hin = c2(7d + i @2), (22)
representing the coupling of a bright qubit-polariton to a “dark”
effective mode &,. Using commutation relations between Hg
and &, the necessary matrix elements of # for the perturbation
analysis in the representation of eigenstates of H.y can
be determined [35]. The simple relation [Heg,& 1] = —wegri)
shows that 7 has no diagonal elements. This means that the
perturbative corrections can only be of significance starting
from second order, at least for the JT ground state and for low
energy lying states. If the frequency spread c; is not negligible
compared to the Jahn-Teller coupling k¢, the description of
the system using a privileged single mode is not possible since
the JT energy is spread among the two modes &;,&;.

We are now in a position to relate the two-resonator circuit
QED model of Eq. (4) to the two-frequency JT model of
Eq. (1). We find that the parameters of the Hamiltonians are
related as follows:

weit = Q1, @' =, eprkett =A1,  Coketr =A2, c2=J.
(23)
The relations require that a condition of the form
Al
Q =2y, (24)
A2

should be satisfied among the parameters of the circuit QED
Hamiltonian.

IV. EXPERIMENTAL IMPLEMENTATION

The system we consider to implement the Hamiltonian
in Eq. (4) consists of two lumped-element LC resonators
capacitively coupled to each other and a flux qubit simulta-
neously coupled to each resonator. A schematic of the circuit
can be seen in Fig. 1. The resonator-resonator interaction
J is determined by the coupling capacitor C, between the
two LC resonators when they are in the ground state J =~

W] W
Cc Vrmsl Vrmsz = Cc 4C]|C%2’

of the uncoupled resonators. Using typical sample parameters
[19,28], the coupling strength between the two resonators
can be made very large, up to a considerable fraction of the
frequency of each resonator. The spurious inductive resonator-
resonator coupling could be minimized with an appropriate
resonator geometry, if necessary. The flux qubit can also be
made of large enough size (as the ones in Ref. [39]) so as to
increase the distance between the resonators and reduce the
mutual resonator-resonator inductance.

The coupling energy A in a flux qubit-resonator system
can become a large fraction of the energy of the resonator if
the qubit is galvanically attached to the resonator, as already
demonstrated experimentally in Refs. [18,19]. For a qubit
either sharing a long section of its inductance [19] or a
Josephson junction [18,21] with a resonator, coupling energies
A & ), are within reach experimentally.

where C| , is the total capacitance
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FIG. 1. (Color online) (a) Schematic of a flux qubit galvan-
ically coupled to two LC resonators through coupling induc-
tances L., ,. Each resonator has resonant frequency w; = [(L12 +
L.,,)C1,]7"/%. The resonators are coupled to each other through
the coupling capacitor C.. (b) Implementation of the circuit using
interdigitated finger capacitors. Feed lines individually coupled to
each resonator can be employed to probe the internal photon state of
the resonators.

From the analysis of Sec. III, in order to study the privileged
mode regime the coupling term in Eq. (10) needs to be larger
than the coupling term in Eq. (17). This implies, according
to the relations in Eq. (23), that A > X,,J. Therefore, in the
experiment the flux qubit has to be ultrastrongly coupled to one
resonator and strongly coupled to the other resonator, while
the resonator-resonator coupling must be close to the qubit-
resonator strong coupling. These designed coupling energies
will determine the privileged mode. Detecting the photon state
of each resonator using feed lines [40] permits the exploriation
of the spectral properties of the complete system.

V. RESULTS

For the sake of simplicity, we choose k| = k, = k so that
kepr = 2k. The relations in Eq. (23) reduce to 2; = Q, =
Qe = (01 + 0)/2,71 = (01 + @)k /2,00 = Ak/+/2 and
J =c; = A/2. Our choice requires the resonators in the
circuit QED system to be degenerate. We further assume
resonance condition 2 = .. The circuit QED Hamiltonian
then becomes

NP PO Aie i
H =&a) + & + 50: + E(Otlocz +&,a1)

+keff<(&1 +ép)+ 5(54 + 512))%- (25)

We use dimensionless energy and time, scaled by /€2, and
1/ ., respectively, but do not change our notation for scaled
variables. Our model is then a two-parameter (k,A) theory
where A is in units of Q..

The resonators are degenerate but the system still simulates
the two-frequency JT model. The coupling coefficient between
the resonators J determines the frequency ratio of the
two vibration modes in the corresponding two-frequency JT
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Hamiltonian of Eq. (1) to be simulated, which becomes
H = wa]a) + walas + Lo,
+ klw1(@] + &) + @@ + a)loy, (26)
where the frequency ratio is determined by

14+ A/2
ﬂ=+—/' 27)
o A2

Some cases of interest are the 2:1 frequency ratio of the two
phonon modes in C¢Hg* and the frequency ratio 3:1 of the two
phonon modes of Fe?* in ZnS [26]. As explained in Sec. III,
the transformation or equivalence of these two Hamiltonians is
exact. For A (or the frequency spread c;) small compared to the
uncoupled eigenfrequencies of the qubit and the resonators, we
obtain a faithful representation of the two-frequency JT model
in terms of the privileged mode. Corrections appear only as
second-order perturbations.

We first examine the eigenenergies of the Hamiltonian in
Eq. (25). The lowest five eigenvalues are shown in Fig. 2.
Here the Fock space dimension for each resonator mode is
fixed to 2 so that we consider up to two-photon manifolds. We
examined the influence of dimensions of the Fock space on
our results in the case of spectrum calculations and found
them to be sufficiently robust. The strong coupling case
with k = 0.1/4/2 (or just the beginning of the ultrastrong
coupling regime) is considered in Fig. 2(a). When A =0
there is only pure Rabi splitting, as can be seen in the
first excited level. When A increases, the coupling between
the privileged and the disadvantaged modes increases. This
polaritonic interaction of the modes causes further repelling
of the Rabi-split levels. Single privileged effective mode
description of the system would only be valid over a narrow
band k ~ |A| < 0.1. The ultrastrong coupling regime with
k = 1/+/2 is considered in Fig. 2(b). An asymmetric Rabi
splitting at A = 0 can be seen in the first excited level. Here
the effective single-mode description is valid over a broader
range |A| < 1. The dependence of the energy spectrum on the
full range of k and A is shown in Fig. 2(c). The first band is
tent-shaped, and for low k it varies sharply with A resulting
in a narrow regime of the effective single-mode description.
As k reaches ultrastrong coupling conditions, the regime of
effective single-mode description becomes more robust against
variations in A over a broader range.

Solid-state and molecular multi-frequency JT systems are
usually investigated through their absorption spectrum. The
corresponding quantity in circuit QED is the transmission
spectrum of the resonators. We consider the power spectrum
of only one resonator, corresponding to the privileged mode.
Deviations from single-mode behavior in this spectrum would
be identified as pure two-frequency effects. In order to
calculate the power spectrum it is necessary to solve the
quantum master equation for the ultrastrong coupling regime,
which can only be rigorously formulated in the dressed
state picture of coupled qubit-resonator, examined recently
in Refs. [41,42]. Our purpose is to see qualititative changes in
the spectrum at different frequency ratios of the two-frequency
JT model. We assume that the usual Bloch-Redfield quantum
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FIG. 2. (Color online) Dependence of the lowest five eigenener-
gies of the two-frequency Jahn-Teller model on the mode-coupling
parameter A. (a) For the qubit-cavity coupling scaling parameter
k = 0.1/+/2, the splitting of the first energy level into three at A = 0
is a pure Rabi splitting. The privileged effective single-mode regime is
valid over a narrow band |A| < 0.1. (b) Atk =1 /ﬁthe energy-level
transitions become flat over a broader band |A| < 1, deeper into the
ultrastrong coupling regime. (c) Energy bands of the two-frequency
Jahn-Teller model depending on the mode-coupling parameter A
and the qubit-cavity coupling scaling parameter k. All the quantities
plotted are dimensionless as explained in the text.

master equation for circuit QED systems in the Born-Markov
approximation is applicable for our purposes [40], and the
equation is given as (7 = 1)

d
L = _ilH.p]+ Lp.

dt (28)
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where the Liouvillian superoperator L is given by

Lo = Y (1+nu)xDla;lp + nucDIa]lp
j=12

+yDlolp + %D[az]p, (29)

with ny, being the average thermal photon number, which we
take as nyg, = 0.1 corresponding to 100 mK [40]. The Lindblad-
type damping superoperators are denoted by D. The cavity
photon loss rate « is taken to be the same for both resonators.
The qubit relaxation and dephasing rates are represented by y
and y,, respectively.

The JT spectrum is determined by calculating the real part
of the Fourier transform of the stationary two-time first-order
correlation function for the privileged mode &, so that

P(w) = / (@)@ (0))e " (30)

[o¢]

We use Python programming language with the QuTip package
for the determination of the spectrum [43]. The decay param-
eters, scaled by €2, are taken to be x = 0.001,y = 0.001, and
v¢ = 0.01, while assuming Fock space of up to two photons
for each resonator mode. When we consider higher Fock space
dimensions (due to numerical constraints we examined up to
five particle manifolds), we find that the spectrum is robust
against the variations in the Fock space dimensions for the
regimes of J < 0.5 we consider. At larger J values small
changes in the spectral intensities are observed, but they are
still negligible up to J ~ 1. For smaller decay rates and at
even larger J values the spectrum becomes more sensitive to
dimensions of the Fock space.

Our results for different values of J are presented in Fig. 3.
Figure 3(a) shows the spectrum when the two resonators
are uncoupled, J = 0. For low ke, the spectrum shows
typical asymmetric Rabi-split frequency peaks of the Jaynes-
Cummings (JC) model around the degenerate frequency of
the resonators. At larger values of ke ~ 1 the system is in
the single-mode JT regime. Figure 3(b) presents the effect of
coupling the resonators with J = 1/2, which corresponds to
the typical frequency ratio 3:1 of two phonon modes of Fe?* in
ZnS. The polaritonic splitting here shifts the Rabi-split peaks
farther away at low values of k.. For kegr ~ 1 the system is in
the two-mode JT regime. Figure 3(c) shows similar features for
J = 1/3, which corresponds to the typical value of frequency
ratio 2:1 of the two phonon modes in C¢Hg™. In this case
for ke > 1.5 the system enters the effective single-mode JT
regime.

The general behavior of the spectrum with the resonator-
resonator coupling J at a given qubit-resonator coupling
ket 1s shown in Fig. 4. Figure 4(a) shows the case when
k is near the threshold of the ultrastrong coupling regime,
kege = 0.1. The spectrum is mainly determined by the two-
frequency character of the system, corresponding to the two-
mode Jaynes-Cummings model. The privileged single-mode
description is limited to very small coupling strengths J =
A /2 < 0.1.Beyond this point, normal mode splitting increases
with J.

When we consider the case of deeper ultrastrong coupling
ke = 1, Fig. 4(b) reveals that it is easier to resolve the
single-mode and two-moderegimes as the single-mode regime
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FIG. 3. (Color online) Resonator-qubit coupling k. dependence
of the cavity emission spectrum for the privileged effective mode
in the two-frequency Jahn-Teller model for different values of the
resonator-resonator coupling strength J. (a) J = 0 corresponds to
the pure single-mode regime. k. << 1 is the single-mode regime in
the JC model. For k. = 1 one enters the regime of single-mode
JT model. (b) J = 1/2 shows three regimes: ks < 1 (two-mode
JC model), ke 2 1 (two-mode JT model), and kg >> J (effective
single-mode JT model). This case simulates the frequency ratio of
3:1 of the two phonon modes in Fe?* in ZnS. (c) J = 1/3 simulates
the frequency ratio of 2:1 of the two phonon modes in C¢Hg*. In this
case the effective single-mode regime is more clear for ke > 1.5.

is significantly enhanced, up to J = A /2 ~ 0.4 < keg. This
observation complies with our previous arguments, based
upon the energy levels of the system in Fig. 3. Beyond the
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FIG. 4. (Color online) Variation of cavity emission spectrum for
the privileged effective mode in the two-frequency Jahn-Teller model
with resonator-resonator coupling J at (a) kegr = 0.1 and (b) ke = 1.

single-mode regime, Fig. 4(b) shows that the higher frequency
peak at w ~ 1.4 disappears, while the lower frequency one at
o ~ 0.2 dominates. The spectrum exhibits additional peaks
that grow in number and in amplitude in the two-frequency
regime. These peaks are due to multiphoton processes that
become more and more significant as one goes deeper into
the strongly coupled JT model [44]. The higher energy
resonance in the single-mode regime turns out to be more
susceptible to such multiphoton processes. The amplitude
of this transition decreases and eventually vanishes in the
two-frequency regime, while the lower energy resonance is
more robust and does not decrease its amplitude significantly.
These results suggest that one can monitor and analyze the
transition between the effective single privileged mode and
the pure two-frequency behavior of a JT system by tuning the
circuit QED parameters into the DSC regime.

VI. CONCLUSIONS

In summary, we have presented a method to simulate a
two-frequency JT model by using a two-resonator circuit QED
system. The proposed model consists of a flux qubit coupled
to two resonators in the ultrastrong coupling regime. An exact
transformation between the two-frequency JT Hamiltonian
and the circuit QED Hamiltonian has been established. The
transformation permits describing the system in terms of an
effective privileged single mode under certain conditions of the
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control parameters of the circuit QED system. The effective
disadvantaged mode can be decoupled from the privileged
one in the ultrastrong coupling regime. The eigenenergy
spectrum and power spectrum are calculated using ultrastrong
circuit QED parameters, with specific attention to the present
experimental restrictions. The tunability of the pure two-mode
JT model and the effective privileged mode model is found to
be feasible in the ultrastrong coupling circuit QED within the
range of parameters in present experiments.

Simulating and interpreting more complex JT systems,
such as vacancies in graphite or fullerides Cy,, would require
going beyond a two-mode description. Our analysis of the
two-frequency JT model simulation can serve as a building
block for further realizations of other classes of multimode
JT systems, by considering, for example, coupled multimode
superconducting transmission line resonators and their interac-
tions with flux qubits in the (ultra)strong coupling regime. Such
extensions of the present work would allow examining rich
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geometric phase effects [37] and designing synthetic gauge
fields, as well as enhancing the comprehension of nonlinear
JT dynamics of complex molecular systems.
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