
Virginia Commonwealth University
VCU Scholars Compass

Electrical and Computer Engineering Publications Dept. of Electrical and Computer Engineering

2005

Photoresponse of n-ZnO∕p-SiC heterojunction
diodes grown by plasma-assisted molecular-beam
epitaxy
Ya. I. Alivov
Virginia Commonwealth University, yialivov@vcu.edu

Ü. Özgür
Virginia Commonwealth University, uozgur@vcu.edu

S. Doğan
Virginia Commonwealth University

See next page for additional authors

Follow this and additional works at: http://scholarscompass.vcu.edu/egre_pubs

Part of the Electrical and Computer Engineering Commons

Alivov, Ya. I., Özgür, Ü., Doğan, S., et al. Photoresponse of n-ZnO∕p-SiC heterojunction diodes grown by plasma-assisted
molecular-beam epitaxy. Applied Physics Letters, 86, 241108 (2005). Copyright © 2005 AIP Publishing LLC.

This Article is brought to you for free and open access by the Dept. of Electrical and Computer Engineering at VCU Scholars Compass. It has been
accepted for inclusion in Electrical and Computer Engineering Publications by an authorized administrator of VCU Scholars Compass. For more
information, please contact libcompass@vcu.edu.

Downloaded from
http://scholarscompass.vcu.edu/egre_pubs/125

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VCU Scholars Compass

https://core.ac.uk/display/51288953?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fegre_pubs%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fegre_pubs%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fegre_pubs%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/egre_pubs?utm_source=scholarscompass.vcu.edu%2Fegre_pubs%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/egre?utm_source=scholarscompass.vcu.edu%2Fegre_pubs%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/egre_pubs?utm_source=scholarscompass.vcu.edu%2Fegre_pubs%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarscompass.vcu.edu%2Fegre_pubs%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/egre_pubs/125?utm_source=scholarscompass.vcu.edu%2Fegre_pubs%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


Authors
Ya. I. Alivov, Ü. Özgür, S. Doğan, D. Johnstone, Vitaliy Avrutin, N. Onojima, C. Liu, J. Xie, Q. Fan, and Hadis
Morkoç

This article is available at VCU Scholars Compass: http://scholarscompass.vcu.edu/egre_pubs/125

http://scholarscompass.vcu.edu/egre_pubs/125?utm_source=scholarscompass.vcu.edu%2Fegre_pubs%2F125&utm_medium=PDF&utm_campaign=PDFCoverPages


Photoresponse of n-ZnO/ p-SiC heterojunction diodes grown
by plasma-assisted molecular-beam epitaxy
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Q. Fan, and H. Morkoç
Virginia Commonwealth University, Department of Electrical Engineering, Richmond, Virginia 23284
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High quality n-ZnO films on commercialp-type 6H–SiC substrates have been grown by
plasma-assisted molecular-beam epitaxy, andn-ZnO/p-SiC heterojunction mesa structures have
been fabricated. Current-voltage characteristics of the structures had a very good rectifying
diode-like behavior with a leakage current less than 2310−4 A/cm2 at −10 V, a breakdown voltage
greater than 20 V, a forward turn on voltage of,5 V, and a forward current of,2 A/cm2 at 8 V.
Photosensitivity of the diodes was studied at room temperature and a photoresponsivity of as high
as 0.045 A/W at −7.5 V reverse bias was observed for photon energies higher than 3.0 eV. ©2005
American Institute of Physics. fDOI: 10.1063/1.1949730g

The semiconductor ZnO has a direct wide band gap
sEg,3.3 eVd and is attractive for optoelectronics applica-
tions due to advantages over GaN such as the availability of
ZnO bulk single crystals and a large exciton binding energy
s,60 meVd.1 Because growth of reproducible high quality
p-type ZnO films has not yet been achieved,2 fabrication of
ZnO p-n homojunctions based light-emitting diodes remains
to be accomplished. For this reason, growth ofn-type ZnO
on otherp-type materials could provide an alternative way
for realizing ZnO basedp-n heterojunctions. This approach
has received considerable attention, and many hetero-p-n
junctions have been realized using variousp-type materials
with n-ZnO: Si, GaN, AlGaN, SrCu2O2, NiO, ZnTe, Cu2O,
CdTe, diamond, ZnRh2O4, and GaAs.2 ZnO-based hetero-
structures have been considered as a candidate not only for
light-emitting devices but also for photodetectors.3–6 Among
the available transparent conductive oxide materials, ZnO
films have promising properties for photodetectors due to
their good electrical and optical properties, relatively low
deposition temperatures, simplicity of fabrication processes,
and, therefore, low cost. Moreover, ZnO-based photodetec-
tors have superior resistance to ionizing radiation and high-
energy particles, and does not require an antireflection layer.1

The main factor influencing the properties of heterostructures
is the close lattice match of the components. In this respect,
6H–SiCfEg,2.9 eV ssee Ref. 7dg is a good candidate since
it has wurtzite crystal structure and relatively good lattice
matching to ZnO with lattice mismatch of,4%, and p
-6H–SiC substrates are commercially available. Previously,
6H–SiC substrates have been used for heteroepitaxial growth
of ZnO and high quality of the grown ZnO films has been
demonstrated.8,9 So far, there has been only one report on the
growth of n-type ZnO onp-type 6H–SiC,10 which relies on
the chemical vapor depositionsCVDd method for ZnO depo-
sition. However, CVD method uses high oxygen pressure
s1–0.1 Torrd during growth that leads to oxidation of the
SiC substrate before ZnO growth commences. As a result,
the grown n-ZnO/p-SiC heterostructures exhibited very

poor current-voltage characteristics.10 For this reason, the
molecular-beam epitaxysMBEd method would be more con-
venient for fabricatingn-ZnO/p-SiC-type heterostructure
devices. In this vein and for the present work,n-ZnO films
were grown onp-6H–SiC substrates by plasma-assisted
MBE and n-ZnO/p-6H–SiC heterojunction diodes were
fabricated, and their photoresponse properties were studied.

MBE growth of 0.5-mm-thick ZnO layers was per-
formed on 131 cm2 p-type 6H–SiC substrates at 600 °C
with a growth rate of 1.1 Å/s. This growth was preceded by
low-temperature deposition of a thin ZnO buffer layer at
300 °C for 3 min. The grown ZnO films showed uninten-
tionally dopedn-type conductivity with an electron concen-
tration of ,831017 cm−3. Commercially grownp-6H–SiC
substrates were 400mm thick and had a hole concentration
of 431017 cm−3. The surface morphology and crystalline
structure of the grown ZnO films were characterized by re-
flection high-energy electron diffractionsRHEEDd and
atomic force microscopy techniques. A streaky RHEED pat-
tern, indicating two-dimensional growth, and smooth film
surface morphology with an rms roughness as low as
1.45 nm were observed. PhotoluminescensesPLd from the
films was measured at both 10 K and 300 K using the
325 nm line of a He–Cd laser. Mesa diode structures with a
diameter of 250mm were fabricated by conventional photo-
lithography. Ohmic contacts ton-ZnO layer andp-SiC sub-
strate were achieved by vacuum evaporation of 300/1000 Å
thick Au/Al and Au/Ni metal layers, respectively. The pho-
toresponse of then-ZnO/p-6H–SiC heterostructure diodes
were studied as a function of the incident photon energy,
excitation intensity, and reverse bias voltage. The diodes
were illuminated both from ZnO and SiC sides.

The 10 K PL spectrum for a MBE-grown ZnO film is
shown in Fig. 1. The spectrum consists of very intense UV
near band edge emission peaks, and a very weak broad
defect-related emission with a maximum at 2.7 eVsinset of
Fig. 1d. The latter, broad, emission originates mainly from
the 6H–SiC substrate as a result of secondary excitation by
UV emission from ZnO and also to a lesser extent from the
defect related transitions in ZnOsgreen bandd. The near band
edge emission consisted of four peaks at 3.375, 3.366, 3.363,
and 3.358 which are denoted in the figure asFXA, D1

0XA,
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D2
0XA, and D3

0XA, respectively. The peak at 3.375 eV is
known to be the freeA-exciton line, and the peaks at 3.366,
3.363, and 3.358 eV are located in the energy region which
is usually attributed to donor-bound excitons.11 There is also
an additional feature at 3.337 eV which may correspond to
two-electron satellites of donor-bound exciton peaks or to the
excitons bound to structural defects.11

Studies of the current-voltagesI-Vd characteristics of the
fabricatedn-ZnO/p-SiC mesa structures revealed the pres-
ence of goodp-n heterojunction betweenn-ZnO andp-SiC.
Figure 2 shows the room-temperatureI-V characteristics of a
typical ZnO/p-SiC heterostructure diode. A very good recti-
fying diode-like behavior is observed with a leakage current
less than 10−7 A s2310−4 A/cm2d, and a forward current of
,10−3 A s,2 A/cm2d at 8 V bias. Breakdown voltage
changed from sample to sample in the 20–23 V range, prob-
ably due to nonuniformity of the grown ZnO films. The ide-
ality factor was estimated from theI-V plot using the follow-
ing diode equation:12

J = JsFexpS qV

nkT
D − 1G , s1d

whereJs is the saturation current density,n the ideality fac-
tor, k the Boltzmann constant, andT the absolute tempera-
ture. The ideality factor obtained is.2, indicating that con-
duction is dominated by nonthermionic processes. The
results show that theI-V characteristics of ourn-ZnO/p
-SiC heterostructures are comparable to that of the best wide
band gap material-based heterostructure diodes reported
previously.13,14

ElectroluminescensesELd measurements under forward
bias showed no light emission from then-ZnO/p-SiC het-
erojunction. The absence of the EL emission can be ex-
plained by noting that electron injection takes place mainly
from the direct band gapn-ZnO into the indirect band gap
p-SiC. It should be noted that no EL was observed either
under forward bias in Ref. 10 fromn-ZnO/p-SiC hetero-
structures grown by CVD. However, emission was reported
under reverse bias conditions, and was attributed to impact
ionization of crystal lattice at high electric fields.10 Such a
behavior may be typical ton-ZnO/p-SiC heterojunctions
due to particular band alignment. The salient features of the
band alignment inn-ZnO/p-SiC heterojunction can be deter-
mined to a first extent from the Anderson model using the

known electron affinities of ZnOsxZnOd and 6H–SiCsxSiCd.
It should be pointed out, of course, that this model describes
the band diagram of the ideal case when there is no lattice
mismatch between contacting materials, and there are no im-
perfections at the interface; however, it allows us to sketch
the most probable heterojunction band alignment. However,
there is a good deal of dispersion in the literature in that
different electron affinity values have been used by different
authors for 6H–SiC s3.3–4.2 eVd15–17 and ZnO
s4.2–4.52 eVd.18–20 Nevertheless, the energy band diagrams
of n-ZnO/p-6H–SiC heterojunction constructed for any
pairs of x has the same configuration, type II band align-
ment, as shown in the inset of Fig. 2. The conduction band
offset DEC is calculated as the difference between electron
affinities of ZnO and 6H–SiC:DEC=xZnO−xSiC. The valence
band offsetDEV is obtained fromDEV=DEC+DEg, where
DEg is the energy band gap difference between ZnO and
6H–SiC: 0.4 eV. As seen from this diagram, the conduction
band offset is much less than that of the valence band, which
means that electron injection fromn-ZnO to p-SiC is more
likely than hole injection fromp-SiC ton-ZnO. Since SiC is
an indirect semiconductor, electron hole recombination in
SiC does not result in discernable visible emission. Again,
these arguments are for the ideal case, and direct measure-
ments are required to determine the exact band structure of
the heterojunction.

Photoresponse properties of then-ZnO/p-6H–SiC het-
erojunctions were also measured at RT, and in contrast to EL,
high photosensitivity to UV radiation was observed. The
photocurrent was observed to change almost linearly with
the incident light intensity. The responsivity was measured
for different reverse bias voltages with illumination from
both ZnO and SiC sides, and the results are shown in Fig. 3.
In the case of illumination from the ZnO side, substantial
increase in the photoinduced current commences at a photon
energy of 3.0 eV, reaching its peak at 3.280 eV, which cor-
responds to the band gap of ZnO at RT. The peak position
did not shift with applied reverse bias. With increasing pho-
ton energy, the photocurrent increases as a result of larger
absorption coefficient at higher photon energies. The respon-
sivity at 3.280 eV was 0.011 A/W for zero bias, and it in-
creased linearly with increasing reverse bias, reaching

FIG. 2. Room-temperatureI-V characteristics ofn-ZnO/p-SiC heterojunc-
tions in both logarithmic and linearsinset on the rightd scales. The inset on
the left depicts the schematic of the energy band diagram of then-ZnO/p
-6H–SiC heterostructure.

FIG. 1. PL spectrum of the ZnO film grown onp-type 6H–SiC substrates by
MBE sT=10 Kd.
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0.045 A/W at −7.5 V. These results show that the photore-
sponse of ourn-ZnO/p-SiC diodes is comparable to that of
the best ZnO-based photodetectors reported previously.21–23

In those reports,p-NiO ssee Ref. 21d andp-Si ssee Refs. 22
and 23d were used as thep-type layer. However, since the
aforementioned materials have a larger lattice mismatch with
ZnO s,9% and,16%, respectivelyd and different crystal
structuresscubicd, the n-ZnO/p-SiC combination structures
have better prospects for photodetector applications. As a
result of such a large lattice mismatch, reportedn-ZnO/
p-NiO and n-ZnO/p-Si heterostructure-based photodiodes
had very large leakage dark current densities:,2 A/cm2

at −6 V, 5310−3 A/cm2 at −4 V,22 and 9310−4 A/cm2 at
−5 V,23 while this value in our case was as low as 2
310−4 A/cm2 at −10 V.

The inset in Fig. 3 presents the spectral response of the
photodiode when illuminated from the SiC side. The spec-
trum consists of a narrow band with a maximum at 3.058 eV
and a full width at half-maximum of 0.1 eV, which did not
change with reverse bias. The responsivity at 3.058 eV for
zero bias was 0.002 A/W and it increased with applied re-
verse voltage, reaching 0.005 A/W at 7.5 V. The responsiv-
ity in this case is 6–10 times smaller than that in the case of
illumination from the ZnO side due to absorption of high-
energy photons in the thick SiC substrate and the smaller
absorption coefficient of the indirect 6H–SiC semiconductor
compared to that of direct band gap ZnO. The spectral be-
havior of then-ZnO/p-SiC heterojunction photodiode when
the ZnO side is illuminated can be explained as follows.
Since the band gap of ZnO is wider than that of 6H–SiCs3.3
and 3.05 eV, respectivelyd it serves as a “window,” and the
photons with energies less than the band gap of ZnO pen-
etrate into the SiC side of the heterostructure, generating
excess carriers in SiC. As the photon energy is increased,
carriers are generated closer and closer to the heterointerface,
and when it becomes equal to,3.3 eV, photogeneration of
carriers occurs in ZnO. Further increase in the photon energy
leads to the formation of excess carriers only in ZnO. In the
case of illumination from the SiC sidesFig. 3, insetd, photons
with energies less than or near the band gap energy of SiC
penetrate the entire thickness of the SiC substrates400 mmd
and generation of charge carriers takes place in the SiC
depletion region of the heterojunction. As the photon energy

increases, the penetration depth of the photons decreases rap-
idly, and the light absorption takes place primarily in the
regions far from the depletion region. Consequently, the ex-
cess carriers that are generated cannot reach the depletion
region in the time scale of their lifetime, and cannot repre-
sent photocurrent contributions due to recombination in SiC.

In summary,n-ZnO/p-6H–SiC-type heterojunction di-
odes were fabricated using unintentionallyn-type doped ZnO
films grown onp-type 6H–SiC substrates by plasma-assisted
MBE. The I-V measurements showed good rectifying diode-
like behavior with low leakage currents,10−7 A at 20 Vd,
high breakdown voltages,−20 Vd, and forward current of
,1310−3 A at 8 V. The ideality factor was greater than 2,
indicating interface defect-mediated conduction. When the
diodes were illuminated from the ZnO side of the heterojunc-
tion with UV radiation of energy.3.28 eV, a photorespon-
sivity as high as 0.045 A/W at −7.5 V reverse bias was ob-
served. These results show thatn-ZnO/p-6H–SiC
heterojunction diodes are promising candidates for UV pho-
todetector applications. Further optimization of ZnO growth
conditions on 6H–-SiC and the thickness of ZnO layer can
lead to improved results.

This work is funded by Air Force Office of Scientific
ResearchsDr. T. Steinerd and benefited from a grant from
BMDO smonitored by D. C. W. Littond through Cermet, Inc.
The authors thank Dr. C. W. Litton for his long time support
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