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We give the definition of generalized timelike Mannheim curve in Minkowski space-time E4
1 . The

necessary and sufficient conditions for the generalized timelike Mannheim curve are obtained. We
show some characterizations of generalized Mannheim curve.

1. Introduction

The geometry of curves has long captivated the interests of mathematicians, from the ancient
Greeks through to the era of Isaac Newton (1643–1727) and the invention of the calculus.
It is a branch of geometry that deals with smooth curves in the plane and in the space
by methods of differential and integral calculus. The theory of curves is the simpler and
narrower in scope because a regular curve in a Euclidean space has no intrinsic geometry.
One of the most important tools used to analyze curve is the Frenet frame, a moving frame
that provides a coordinate system at each point of curve that is ”best adopted” to the curve
near that point. Every person of classical differential geometry meets early in his course the
subject of Bertrand curves, discovered in 1850 by J. Bertrand. A Bertrand curve is a curve such
that its principal normals are the principal normals of a second curve. There are many works
related with Bertrand curves in the Euclidean space and Minkowski space, [1–3].

Another kind of associated curve is called Mannheim curve and Mannheim partner
curve. The notion of Mannheim curves was discovered by A. Mannheim in 1878. These
curves in Euclidean 3-space are characterized in terms of the curvature and torsion as follows:
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a space curve is a Mannheim curve if and only if its curvature k1 and torsion k2 satisfy the
relation

k1 = β
(
k2

1 + k
2
2

)
(1.1)

for some constant β. The articles concerning Mannheim curves are rather few. In [4],
a remarkable class of Mannheim curves is studied. General Mannheim curves in the
Euclidean 3-space are obtained in [5–7]. Recently, Mannheim curves are generalized and
some characterizations and examples of generalized Mannheim curves are given in Euclidean
4-space E4 by [8].

In this paper, we study the generalized timelike Mannheim partner curves in 4-
dimensional Minkowski space-time. We will give the necessary and sufficient conditions for
the generalized timelike Mannheim partner curves.

2. Preliminaries

To meet the requirements in the next sections, the basic elements of the theory of curves in
Minkowski space-time E4

1 are briefly presented in this section. A more complete elementary
treatment can be found in [9].

Minkowski space-time E4
1 is a usual vector space provided with the standard flat

metric given by

〈 , 〉 = −dx2
1 + dx

2
2 + dx

2
3 + dx

2
4, (2.1)

where (x1, x2, x3, x4) is a rectangular coordinate system in E4
1.

Since 〈 , 〉 is an indefinite metric, recall that a v ∈ E4
1 can have one of the three causal

characters; it can be spacelike if 〈v, v〉 > 0 or v = 0, timelike if 〈v, v〉 < 0, and null(ligthlike)
if 〈v, v〉 = 0 and v/= 0. Similarly, an arbitrary curve c = c(t) in E4

1 can locally be spacelike,
timelike, or null (lightlike) if all of its velocity vectors c′(t) are, respectively, spacelike,
timelike, or null. The norm of v ∈ E4

1 is given by ‖v‖ =
√
|〈v, v〉|. If ‖c′(t)‖ =

√
|〈c′(t), c′(t)〉|/= 0

for all t ∈ I, then C is a regular curve in E4
1. A timelike (spacelike) regular curve C is

parameterized by arc-length parameter t which is given by c : I → E4
1, then the tangent

vector c′(t) along C has unit length, that is, 〈c′(t), c′(t)〉 = −1, (〈c′(t), c′(t)〉 = 1) for all t ∈ I.
Hereafter, curves considered are timelike and regular C∞ curves in E4

1. Let T(t) = c′(t)
for all t ∈ I; then the vector field T(t) is timelike and it is called timelike unit tangent vector
field on C.

The timelike curve C is called special timelike Frenet curve if there exist three smooth
functions k1, k2, k3 on C and smooth nonnull frame field {T,N,B1,B2} along the curve C.
Also, the functions k1, k2, and k3 are called the first, the second, and the third curvature
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function on C, respectively. For the C∞ special timelike Frenet curve C, the following Frenet
formula is

⎡
⎢⎢⎢⎢⎢⎣

T′

N′

B′1
B′2

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

0 k1 0 0

k1 0 k2 0

0 −k2 0 k3

0 0 −k3 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

T

N

B1

B2

⎤
⎥⎥⎥⎥⎥⎦
, (2.2)

see [9].
Here, due to characters of Frenet vectors of the timelike curve, T, N, B1, and B2 are

mutually orthogonal vector fields satisfying equations

〈T,T〉 = −1, 〈N,N〉 = 〈B1,B1〉 = 〈B2,B2〉 = 1. (2.3)

For t ∈ I, the nonnull frame field {T,N,B1,B2} and curvature functions k1, k2, and k3 are
determined as follows:

1st step T(t) = c′(t),

2nd step k1(t) =
∥∥T′(t)

∥∥ > 0,

N(t) =
1

k1(t)
T′(t),

3 rd step k2(t) =
∥∥N′(t) − k1(t)T(t)

∥∥ > 0,

B1(t) =
1

k2(t)
(
N′(t) − k1(t)T(t)

)
,

4th step B2(t) = δ
1∥∥B′1(t) + k2(t)N(t)

∥∥
(
B′1(t) + k2(t)N(t)

)
,

(2.4)

where δ is determined by the fact that orthonormal frame field {T(t),N(t),B1(t),B2(t)} is of
positive orientation. The function k3 is determined by

k3(t) =
〈
B′1(t),B2(t)

〉
/= 0. (2.5)

So the function k3 never vanishes.
In order to make sure that the curve C is a special timelike Frenet curve, above steps

must be checked, from 1st step to 4th step, for t ∈ I.
Let {T,N,B1,B2} be the moving Frenet frame along a unit speed timelike curveC in E4

1,
consisting of the tangent, the principal normal, the first binormal, and the second binormal
vector field, respectively. Since C is a timelike curve, its Frenet frame contains only nonnull
vector fields.
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3. Generalized Timelike Mannheim Curves in E4
1

Mannheim curves are generalized by Matsuda and Yorozu in [8]. In this paper, we have
investigated the generalization of timelike Mannheim curves in Minkowski space E4

1.

Definition 3.1. A special timelike curve C in E4
1 is a generalized timelike Mannheim curve if

there exists a special timelike Frenet curve C∗ in E4
1 such that the first normal line at each

point of C is included in the plane generated by the second normal line and the third normal
line of C∗ at the corresponding point under φ. Here, φ is a bijection from C to C∗. The curve
C∗ is called the generalized timelike Mannheim mate curve of C.

By the definition, a generalized Mannheim mate curve C∗ is given by the map c∗ :
I∗ → E4

1 such that

c∗(t) = c(t) + β(t)N(t), t ∈ I. (3.1)

Here β is a smooth function on I. Generally, the parameter t is not an arc-length of C∗. Let t∗

be the arc-length of C∗ defined by

t∗ =
∫ t

0

∥∥∥∥
dc∗(t)
dt

∥∥∥∥dt. (3.2)

If a smooth function f : I → I∗ is given by f(t) = t∗, then for all t ∈ I, we have

f ′(t) =
dt∗

dt
=

∥∥∥∥
dc∗(t)
dt

∥∥∥∥ =
√∣∣∣−(1 + β(t)k1(t)

)2 +
(
β′(t)

)2 +
(
β(t)k2(t)

)2
∣∣∣. (3.3)

The representation of timelike curve C∗ with arc-length parameter t∗ is

c∗ : I∗ −→ E4
1,

t∗ −→ c∗(t∗).
(3.4)

For a bijection φ : C → C∗ defined by φ(c(t)) = c∗(f(t)), the reparameterization of C∗ is

c∗
(
f(t)

)
= c(t) + β(t)N(t), (3.5)

where β is a smooth function on I. Thus, we have

dc∗
(
f(t)

)

dt
=
dc∗(t∗)
dt

∣∣∣∣∣
t∗=f(t)

f ′(t) = f ′(t)T∗
(
f(t)

)
, t ∈ I. (3.6)



Mathematical Problems in Engineering 5

Theorem 3.2. If a special timelike Frenet curve C in E4
1 is a generalized timelike Mannheim curve,

then the following relation between the first curvature function k1 and the second curvature function
k2 holds:

k1(t) = −β
(
k2

1(t) − k
2
2(t)

)
, t ∈ I, (3.7)

where β is a constant number.

Proof. Let C be a generalized timelike Mannheim curve and C∗ the generalized timelike
Mannheim mate curve of C, as the following diagram:

f :
c
· ·
I

∗
c
· ·
I∗

φ : E4
1 E4

1

(3.8)

A smooth function f is defined by f(t) =
∫
‖dc∗(t)/dt‖dt = t∗ and t∗ is the arc-length

parameter of C∗. Also, φ is a bijection defined by φ(c(t)) = c∗(f(t)). Thus, the timelike curve
C∗ is reparametrized as follows

c∗
(
f(t)

)
= c(t) + β(t)N(t), (3.9)

where β : I ⊂ � → � is a smooth function. By differentiating both sides of (3.9) with respect
to t, we have

f ′(t)T∗
(
f(t)

)
=

(
1 + β(t)k1(t)

)
T + β′(t)N(t) + β(t)k2(t)B1(t). (3.10)

On the other hand, since the first normal line at each point of C is lying in the plane generated
by the second normal line and the third normal line of C∗ at the corresponding points under
bijection φ, the vector field N(t) is given by

N(t) = g(t)B1
∗(f(t)) + h(t)B2

∗(f(t)), (3.11)

where g and h are some smooth functions on I ⊂ �. If we take into consideration

〈
T∗

(
f(t)

)
, g(t)B1

∗(f(t)) + h(t)B2
∗(f(t))〉 = 0 (3.12)

and (3.10), then we have β′(t) = 0. So we rewrite (3.10) as

f ′(t)T∗
(
f(t)

)
=

(
1 + βk1(t)

)
T(t) + βk2(t)B1(t), (3.13)
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that is,

T∗
(
f(t)

)
=

(
1 + βk1(t)

)

f ′(t)
T(t) +

βk2(t)
f ′(t)

B1(t), (3.14)

where

f ′(t) =
√∣∣∣−(1 + βk1(t)

)2 +
(
βk2(t)

)2
∣∣∣. (3.15)

By taking the differentiations both sides of (3.13) with respect to t ∈ I, we get

f ′(t)k∗1
(
f(t)

)
N∗

(
f(t)

)
=

(
1 + βk1(t)
f ′(t)

)′
T(t)

+

((
1 + βk1(t)

)
k1(t) − β(k2(t))2

f ′(t)

)
N(t)

+
(
βk2(t)
f ′(t)

)′
B1(t) +

(
βk2(t)k3(t)

f ′(t)

)
B2(t).

(3.16)

Since

〈
N∗

(
f(t)

)
, g(t)B1

∗(f(t)) + h(t)B2
∗(f(t))〉 = 0, (3.17)

the coefficient of N(t) in (3.16) vanishes, that is,

(
1 + βk1(t)

)
k1(t) − β(k2(t))2 = 0. (3.18)

Thus, this completes the proof.

Theorem 3.3. In E4
1, letC be a special timelike Frenet curve such that its nonconstant first and second

curvature functions satisfy the equality k1(s) = −β(k2
1(t) − k

2
2(t)) for all t ∈ I ⊂ �. If the timelike

curve C∗ given by

c∗(t) = c(t) + βN(t) (3.19)

is a special timelike Frenet curve, then C∗ is a generalized timelike Mannheim mate curve of C.

Proof. The arc-length parameter of C∗ is given by

t∗ =
∫ t

0

∥∥∥∥
dc∗(t)
dt

∥∥∥∥dt, t ∈ I. (3.20)
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Under the assumption of

k1(t) = −β
(
k2

1(t) − k
2
2(t)

)
, (3.21)

we obtain f ′(t) =
√
|1 + βk1(t)|, t ∈ I.

Differentiating the equation c∗(f(t)) = c(t) + βN(t) with respect to t, we reach

f ′(t)T∗
(
f(t)

)
=

(
1 + βk1(t)

)
T(t) + βk2(t)B1(t). (3.22)

Thus, it is seen that

T∗
(
f(t)

)
=

⎛
⎜⎝ 1 + βk1(t)√∣∣1 + βk1(t)

∣∣
T(t) +

βk2(t)√∣∣1 + βk1(t)
∣∣

B1(t)

⎞
⎟⎠, t ∈ I. (3.23)

The differentiation of the last equation with respect to t is

f ′(t)k∗1
(
f(t)

)
N∗

(
f(t)

)
=

(√∣∣1 + βk1(t)
∣∣
)′

T(t)

+

⎛
⎜⎝

(
1 + βk1(t)

)
k1(t) − βk2

2(t)√∣∣1 + βk1(t)
∣∣

⎞
⎟⎠N(t)

+

⎛
⎜⎝ βk2(t)√∣∣1 + βk1(t)

∣∣

⎞
⎟⎠
′

B1(t) +

⎛
⎜⎝ βk2(t)k3(t)√∣∣1 + βk1(t)

∣∣

⎞
⎟⎠B2(t).

(3.24)

From our assumption, we have

k1(t) + βk2
1(t) − βk

2
2(t)√∣∣1 + βk1(t)

∣∣
= 0. (3.25)

Thus, the coefficient of N(t) in (3.24) is zero. It is seen from (3.23) that T∗(f(t)) is a
linear combination of T(t) and B1(t). Additionally, from (3.24), N∗(f(t)) is given by linear
combination of T(t), B1(t), and B2(t). On the other hand, C∗ is a special timelike Frenet curve
that the vector N(t) is given by linear combination of B∗1(f(t)) and B∗2(f(t)).

Therefore, the first normal line of C lies in the plane generated by the second normal
line and third normal line of C∗ at the corresponding points under a bijection φ defined by
φ(c(t)) = c∗(f(t)).

This completes the proof.
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Remark 3.4. In 4-dimensional Minkowski space E4
1, a special timelike Frenet curve C with

curvature functions k1 and k2 satisfying k1(t) = −β(k2
1(t) − k

2
2(t)), it is not clear that a smooth

timelike curve C∗ given by (3.1) is a special Frenet curve. Thus, it is unknown whether the
reverse of Theorem 3.2 is true or not.

Theorem 3.5. Let C be a special timelike curve in E4
1 with nonzero third curvature function k3. There

exists a timelike special Frenet curve C∗ in E4
1 such that the first normal line of C is linearly dependent

with the third normal line of C∗ at the corresponding points c(t) and c∗(t), respectively, under a
bijection φ : C → C∗, if and only if the curvatures k1 and k2 of C are constant functions.

Proof. Let C be a timelike Frenet curve in E4
1 with the Frenet frame field {T,N,B1,B2} and

curvature functions k1, k2, and k3. Also, we assume that C∗ is a timelike special Frenet curve
in E4

1 with the Frenet frame field {T∗,N∗,B1
∗,B2

∗} and curvature functions k∗1, k∗2, and k∗3.
Let the first normal line of C be linearly dependent with the third normal line of C∗ at the
corresponding points C and C∗, respectively. Then the parameterization of C∗ is

c∗
(
f(t)

)
= c(t) + β(t)N(t), t ∈ I. (3.26)

If the arc-length parameter of C∗ is given t∗, then

t∗ =
∫ t

0

√∣∣∣−(1 + β(t)k1(t)
)2 +

(
β′(t)

)2 +
(
β(t)k2(t)

)2
∣∣∣dt, (3.27)

f : I −→ I∗,

t −→ f(t) = t∗.
(3.28)

Moreover, φ : C → C∗ is a bijection given by φ(c(t)) = c∗(f(t)).

Differentiating (3.26) with respect to t and using the Frenet formulas, we get

f ′(t)T∗
(
f(t)

)
=

(
1 + β(t)k1(t)

)
T(t) + β′(t)N(t) + β(t)k2(t)B1(t). (3.29)

Since B2
∗(f(t)) = ∓N(t), then

〈
f ′(t)T∗

(
f(t)

)
,B2

∗(f(t))〉 = 〈
(
1 + β(t)k1(t)

)
T(t) + β′(t)N(t) + β(t)k2(t)B1(t),∓N(t)〉 (3.30)

that is,

0 = ∓β′(t). (3.31)

From the last equation, it is easily seen that β is a constant number. Hereafter, we can denote
β(t) = β, for all t ∈ I.
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From (3.27), we have

f ′(t) =
√∣∣∣−(1 + βk1(t)

)2 +
(
βk2(t)

)2
∣∣∣ > 0. (3.32)

Thus, we rewrite (3.29) as follows:

T∗
(
f(t)

)
=

(1 + βk1(t)
f ′(t)

)
T(t) +

(
βk2(t)
f ′(t)

)
B1(t). (3.33)

The differentiation of the last equation with respect to t is

f ′(t)k∗1
(
f(t)

)
N∗

(
f(t)

)
=

(1 + βk1(t)
f ′(t)

)′
T(t)

+

((
1 + βk1(t)

)
k1(t) − βk2

2(t)
f ′(t)

)
N(t)

+
(
βk2(t)
f ′(t)

)′
B1(t) +

(
βk2(t)k3(t)

f ′(t)

)
B2(t).

(3.34)

Since 〈f ′(t)k∗1(f(t))N
∗(f(t)),B2

∗(f(t))〉 = 0 and B2
∗(f(t)) = ∓N(t) for all t ∈ I,

k1(t) + βk2
1(t) − βk

2
2(t) = 0 (3.35)

is satisfied. Then

β = − k1(t)
k2

1(t) − k
2
2(t)

(3.36)

is a nonzero constant number. Thus, from (3.34), we reach

N∗
(
f(t)

)
=

1
f ′(t)K(t)

(1 + βk1(t)
f ′(t)

)′
T(t) +

1
f ′(t)K(t)

(
βk2(t)
f ′(t)

)′
B1(t)

+
1

f ′(t)K(t)

(
βk2(t)k3(t)

f ′(t)

)
B2(t),

(3.37)
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where K(t) = k∗1(f(t)) for all t ∈ I. Differentiating the last equation with respect to t, then we
have

f ′(t)
[
k∗1

(
f(t)

)
T∗

(
f(t)

)
+ k∗2

(
f(t)

)
B∗1

(
f(t)

)]

=

(
1

f ′(t)K(t)

(1 + βk1(t)
f ′(t)

)′)′
T(t)

+

(
k1(t)

f ′(t)K(t)

(
1 + βk1(t)
f ′(t)

)′
− k2(t)
f ′(t)K(t)

(
βk2(t)
f ′(t)

)′)
N(t)

+

((
1

f ′(t)K(t)

(
βk2(t)
f ′(t)

)′)′
− k3(t)
f ′(t)K(t)

(
βk2(t)k3(t)

f ′(t)

))
B1(t)

+

((
1

f ′(t)K(t)

(
βk2(t)k3(t)

f ′(t)

))′
+

k3(t)
f ′(t)K(t)

(
βk2(t)
f ′(t)

)′)
B2(t)

(3.38)

for all t ∈ I. Considering

〈
f ′(t)

(
k∗1

(
f(t)

)
T∗

(
f(t)

)
+ k∗2

(
f(t)

)
B∗1

(
f(t)

))
,B∗2

(
f(t)

)〉
= 0,

B∗2
(
f(t)

)
= ∓N(t),

(3.39)

then we get

k1(t)
(1 + βk1(t)

f ′(t)

)′
− k2(t)

(
βk2(t)
f ′(t)

)′
= 0. (3.40)

Arranging the last equation, we find

β
[
k1(t)k′1(t) − k2(t)k′2(t)

]
f ′(t) −

[
k1(t) + βk2

1(t) − βk
2
2(t)

]
f ′′(t) = 0. (3.41)

Moreover, the differentiation of (3.36) with respect to t is

k′1(t) + 2β
(
k1(t)k′1(t) − k2(t)k′2(t)

)
= 0. (3.42)

From the above equation, it is seen that

−
k′1(t)

2
= β

(
k1(t)k′1(t) − k2(t)k′2(t)

)
. (3.43)

Substituting (3.36) and (3.43) into (3.41), we obtain

−
k′1(t)

2
= 0. (3.44)
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This means that the first curvature function is constant (that is, positive constant).
Additionally, from (3.43) it is seen that the second curvature function k2 is positive constant,
too.

Conversely, suppose that C is a timelike Frenet curve in E4
1 with the Frenet frame field

{T,N,B1,B2} and curvature functions k1, k2, and k3. The first curvature function k1 and the
second curvature function k2 of C are of positive constant. Thus, k1/(k2

2 − k
2
1) is a positive

constant number, say β.
The representation of timelike curve C∗ with arc-length parameter t is

c∗ : I −→ E4
1,

t −→ c∗(t) = c(t) + β(t)N(t).
(3.45)

Let t∗ denote the arc-length parameter of C∗; we have

f : I −→ I∗,

t −→ t∗ = f(t) =
√∣∣1 + βk1

∣∣t.
(3.46)

Then, we obtain f ′(t) =
√
|1 + βk1| and

f ′(t)T∗
(
f(t)

)
= T(t) + βN′(t)

=
(
1 + βk1

)
T(t) + βk2B1(t),

(3.47)

that is,

T∗
(
f(t)

)
=

√∣∣1 + βk1
∣∣T(t) + βk2√∣∣1 + βk1

∣∣
B1(t). (3.48)

By differentiating the both sides of the above equality with respect to t, we find

f ′(t)
dT∗(t∗)
dt∗

∣∣∣∣
t∗=f(t)

=
√∣∣1 + βk1

∣∣T′(t) + βk2√∣∣1 + βk1
∣∣

B′1(t)

=

⎡
⎢⎣
k1

(
1 + βk1

)
− βk2

2√∣∣1 + βk1
∣∣

⎤
⎥⎦N(t) +

⎡
⎢⎣ βk2k3(t)√∣∣1 + βk1

∣∣

⎤
⎥⎦B2(t)

=

⎡
⎢⎣ βk2k3(t)√∣∣1 + βk1

∣∣

⎤
⎥⎦B2(t).

(3.49)
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Hence, since k3 does not vanish, we get

k∗1
(
f(t)

)
=

∥∥∥∥∥
dT∗(t∗)
dt∗

∣∣∣∣
t∗=f(t)

∥∥∥∥∥ = ε
βk2k3(t)∣∣1 + βk1

∣∣ > 0, (3.50)

where ε = sign(k3) denotes the sign of function k3. That is, ε is −1 or +1.
We can put

N∗(t∗) =
1

k∗1(t
∗)
dT∗(t∗)
dt∗

, t ∈ I. (3.51)

Then, we get

N∗
(
f(t)

)
= εB2(t). (3.52)

Differentiating of the last equation with respect to t, we reach

f ′(t)
dN∗(t∗)
dt∗

∣∣∣∣
t∗=f(t)

= −εk3B1(t), (3.53)

and we have

dN∗(t∗)
dt∗

∣∣∣∣
t∗=f(t)

− k∗1
(
f(t)

)
T∗

(
f(t)

)
= −ε

βk2k3(t)√∣∣1 + βk1
∣∣

T(t) − ε
√∣∣1 + βk1

∣∣k3(t)B1(t). (3.54)

Since εk3(t) is positive for t ∈ I, we have

k∗2
(
f(t)

)
=

∥∥∥∥∥
dN∗(t∗)
dt∗

∣∣∣∣
t∗=f(t)

− k∗1
(
f(t)

)
T∗

(
f(t)

)
∥∥∥∥∥

=

√√√√
∣∣∣∣∣−
β2k2

2(k3(t))2

∣∣1 + βk1
∣∣ +

(∣∣1 + βk1
∣∣)(k3(t))2

∣∣∣∣∣

=
√
(k3(t))2 = εk3(t) > 0.

(3.55)

Thus, we can put

B1
∗(f(t)) =

1
k∗2

(
f(t)

)
(
dN∗(t∗)
dt∗

∣∣∣∣
t∗=f(t)

− k∗1
(
f(t)

)
T∗

(
f(t)

)
)

= −
βk2√∣∣1 + βk1

∣∣
T(t) −

√∣∣1 + βk1
∣∣B1(t), t ∈ I.

(3.56)
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By differentiation of the above equation with respect to t, we get

f ′(t)
dB1

∗(t∗)
dt∗

∣∣∣∣
t∗=f(t)

=
k2√∣∣1 + βk1

∣∣
N(t) − k3(t)

√∣∣1 + βk1
∣∣B2(t). (3.57)

Since f ′(t) =
√
|1 + βk1| and k∗2(f(t))N

∗(f(t)) = k3(t)B2(t), we have

dB1
∗(t∗)
dt∗

∣∣∣∣
t∗=f(t)

+ k∗2
(
f(t)

)
N∗

(
f(t)

)
=

k2∣∣1 + βk1
∣∣N(t). (3.58)

Thus, we obtain B2
∗(f(t)) = δN(t) for t ∈ I, where δ = ∓1. We must determine whether δ

is −1 or +1 under the condition that the frame field {T∗(t),N∗(t),B∗1(t),B
∗
2(t)} is of positive

orientation.
We have, by det[T(t),N(t),B1(t),B2(t)] = 1 for t ∈ I,

det
[
T∗(t),N∗(t),B∗1(t),B

∗
2(t)

]

= det

⎡
⎢⎢⎢⎢⎢⎣

√∣∣1 + βk1
∣∣T(t) + βk2√∣∣1 + βk1

∣∣
B1(t),

εB2(t),−
βk2√∣∣1 + βk1

∣∣
T(t) −

√∣∣1 + βk1
∣∣B1(t), δN(t)

⎤
⎥⎥⎥⎥⎥⎦

= εδ

(
(∣∣1 + βk1

∣∣) − β2k2
2∣∣1 + βk1

∣∣
)

= εδ

(3.59)

and det[T∗(t),N∗(t),B∗1(t),B
∗
2(t)] = 1 for any t ∈ I. Therefore, we get ε = δ. Thus, we get

B∗2
(
f(t)

)
= εN(t),

k∗3
(
f(t)

)
=

〈
dB∗1(t

∗)
dt∗

∣∣∣∣
t∗=f(t)

,B∗2
(
f(t)

)
〉

= ε
k2∣∣1 + βk1

∣∣ , t ∈ I.

(3.60)

By the above facts, C∗ is a special Frenet curve in E4
1 and the first normal line at each point of

C is the third normal line of C∗ at corresponding each point under the bijection φ : c(t) →
φ(c(t)) = c∗(f(t)) ∈ C∗.

Thus, the proof is completed.
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The following theorem gives a parametric representation of a generalized timelike
Mannheim curves E4

1.

Theorem 3.6. Let C be a timelike special curve defined by

c(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β

∫
f(s) cosh s ds

β

∫
f(s) sinh s ds

β

∫
f(s)g(s)ds

β

∫
f(s)h(s)ds

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, s ∈ U ⊂ �. (3.61)

Here, β is a nonzero constant number, g : U → � and h : U → � are any smooth functions, and
the positive-valued smooth function f : U → � is given by

f =
(

1 − g2(s) − h2(s)
)−3/2(

1 − g2(s) − h2(s) + ġ2(s) + ḣ2(s) −
(
ġ(s)h(s) − g(s)ḣ(s)

)2
)−5/2

×

⎡
⎢⎢⎢⎣ −

(
1 − g2(s) − h2(s) + ġ2(s) + ḣ2(s) −

(
ġ(s)h(s) − g(s)ḣ(s)

)2
)3

+
(

1 − g2(s) − h2(s)
)3

⎛
⎜⎜⎜⎝

−
(
g(s) − g̈(s)

)2 −
(
h(s) − ḧ(s)

)2

−
((
g(s)ḣ(s) − ġ(s)h(s)

)
−
(
ġ(s)ḧ(s) − g̈(s)ḣ(s)

))2

+
(
g(s)ḧ(s) − g̈(s)h(s)

)2

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦,

(3.62)

for s ∈ U. Then, the curvature functions k1 and k2 of C satisfy

k1 = −β
(
k2

1 − k
2
2

)
(3.63)

at each point c(s) of C.

Proof. Let C be a timelike special curve defined by

c(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β

∫
f(s) cosh s ds

β

∫
f(s) sinh s ds

β

∫
f(s)g(s)ds

β

∫
f(s)h(s)ds

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, s ∈ U ⊂ �, (3.64)
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where β is a nonzero constant number g and h are any smooth functions. f is a positive-
valued smooth function. Thus, we obtain

ċ(s) =

⎡
⎢⎢⎢⎢⎢⎣

βf(s) cosh s

βf(s) sinh s

βf(s)g(s)

βf(s)h(s)

⎤
⎥⎥⎥⎥⎥⎦
, s ∈ U ⊂ �, (3.65)

where the subscript prime (·) denotes the differentiation with respect to s.
The arc-length parameter t of C is given by

t = ψ(s) =
∫s

s0

‖ċ(s)‖ds, (3.66)

where ‖ċ(s)‖ = βf(s)
√
−1 + g2(s) + h2(s).

If ϕ denotes the inverse function of ψ : U → I ⊂ �, then s = ϕ(t) and we get

ϕ′(t) =

∥∥∥∥∥
dc(s)
ds

∣∣∣∣
s=ϕ(t)

∥∥∥∥∥
−1

, t ∈ I, (3.67)

where the prime (′) denotes the differentiation with respect to t.
The unit tangent vector T(t) of the curve C at the each point c(ϕ(t)) is given by

T(t) =
(
−1 + g2(ϕ(t)) + h2(ϕ(t))

)−1/2

⎡
⎢⎢⎢⎢⎢⎣

cosh
(
ϕ(t)

)

sinh
(
ϕ(t)

)

g
(
ϕ(t)

)

h
(
ϕ(t)

)

⎤
⎥⎥⎥⎥⎥⎦
, t ∈ I. (3.68)

Some simplifying assumptions are made for the sake of brevity as follows:

sinh := sinh
(
ϕ(t)

)
, cosh := cosh

(
ϕ(t)

)
,

f := f
(
ϕ(t)

)
, g := g

(
ϕ(t)

)
, h := h

(
ϕ(t)

)
,

ġ := ġ
(
ϕ(t)

)
=
dg(s)
ds

∣∣∣∣
s=ϕ(t)

, ḣ := ḣ
(
ϕ(t)

)
=
dh(s)
ds

∣∣∣∣
s=ϕ(t)

,

g̈ := g̈
(
ϕ(t)

)
=
d2g(s)
ds2

∣∣∣∣∣
s=ϕ(t)

, ḧ := ḧ
(
ϕ(t)

)
=
d2h(s)
ds2

∣∣∣∣∣
s=ϕ(t)

,

ϕ′ := ϕ′(t) =
dϕ

dt

∣∣∣∣
t

,

A := 1 − g2 − h2, B := −gġ − hḣ, C := −ġ2 − ḣ2,

D := −gg̈ − hḧ, E := −ġg̈ − ḣḧ, F := g̈2 + ḧ2.

(3.69)
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Thus, we get

Ȧ = 2B, Ḃ = C +D, Ċ = 2E, ϕ′ = β−1f−1A−1/2. (3.70)

So, we rewrite (3.68) as

T := T(t) = A−1/2

⎡
⎢⎢⎢⎢⎢⎣

cosh

sinh

g

h

⎤
⎥⎥⎥⎥⎥⎦
. (3.71)

Differentiating the last equation with respect to t, we find

T′ = ϕ′

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2
A−3/2Ȧ cosh+A−1/2sinh

−1
2
A−3/2Ȧ sinh+A−1/2cosh

−1
2
A−3/2Ȧg +A−1/2ġ

−1
2
A−3/2Ȧh +A−1/2ḣ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.72)

that is,

T′ = −ϕ′A−1/2

⎡
⎢⎢⎢⎢⎢⎣

A−1B cosh− sinh

A−1B sinh− cosh

A−1Bg − ġ

A−1Bh − ḣ

⎤
⎥⎥⎥⎥⎥⎦
. (3.73)

From the last equation, we find

k1 := k1(t) =
∥∥T′(t)

∥∥ = ϕ′A−1
(
A −AC + B2

)1/2
. (3.74)

By the fact that N(t) = (k1(t))−1T′(t), we get

N := N(t) = −A1/2
(
A −AC + B2

)−1/2

⎡
⎢⎢⎢⎢⎢⎣

A−1B cosh− sinh

A−1B sinh− cosh

A−1Bg − ġ

A−1Bh − ḣ

⎤
⎥⎥⎥⎥⎥⎦
. (3.75)
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In order to get second curvature function k2, we need to calculate k2(t) = ‖N′(t) − k1(t)T(t)‖.
After a long process of calculations and using abbreviations, we obtain

N′ − k1T = ϕ′A−3/2
(
A −AC + B2

)−3/2

⎡
⎢⎢⎢⎢⎢⎣

(P +Q) cosh−R sinh

(P +Q) sinh−R cosh

Pg − Rġ +Qg̈

Ph − Rḣ +Qḧ

⎤
⎥⎥⎥⎥⎥⎦
, (3.76)

where

P =
(
A −AC + B2)(B2 −AC −AD

)
−
(
A −AC + B2)2 +AB(B −AE + BD),

Q = A2(A −AC + B2),
R = A2(B −AE + BD).

(3.77)

If we simplify P , then we have

P = A2(C − BE −D + CD − 1). (3.78)

Therefore, we rewrite (3.76) and (3.77) as

N′ − k1T = ϕ′A−1/2
(
A −AC + B2

)−3/2

⎡
⎢⎢⎢⎢⎢⎢⎣

(
P̃ + Q̃

)
cosh−R̃ sinh

(
P̃ + Q̃

)
sinh−R̃ cosh

P̃g − R̃ġ + Q̃g̈

P̃h − R̃ḣ + Q̃ḧ

⎤
⎥⎥⎥⎥⎥⎥⎦
, (3.79)

where

P̃ = C −D +CD − BE − 1,
Q̃ = A −AC + B2,

R̃ = B −AE + BD.
(3.80)

Consequently, from (3.79) and (3.80), we have

∥∥N′ − k1T
∥∥2 =

(
ϕ′
)2
A
(
A −AC + B2

)−3

⎡
⎢⎢⎢⎣

−
(
P̃ + Q̃

)2
+ R̃2 + P̃ 2(g2 + h2) + R̃2(ġ2 + ḣ2)

+Q̃2(g̈2 + ḧ2) − 2P̃ R̃
(
gġ + hḣ

)

−2R̃Q̃
(
ġg̈ + ḣḧ

)
+ 2P̃ Q̃

(
gg̈ + hḧ

)

⎤
⎥⎥⎥⎦.

(3.81)
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Substituting the abbreviations into the last equation, we have

∥∥N′ − k1T
∥∥2 =

(
ϕ′
)2
A
(
A −AC + B2

)−3

×
[
−P̃ 2A − 2P̃Q̃ − Q̃2 + R̃2 − R̃2C + Q̃2F + 2P̃ R̃B + 2R̃Q̃E − 2P̃Q̃D

]
.

(3.82)

After substituting (3.80) into the last equation and simplifying it, we get

k2
2 =

∥∥N′ − k1T
∥∥2

=
(
ϕ′
)2
A
(
A −AC + B2

)−2[(
A −AC + B2

)
(1 − F) + (C − 1)(1 +D)2 − 2BE(1 +D) +AE2

]
.

(3.83)

Moreover, from (3.74) it is seen that

k2
1 =

(
ϕ′
)2
A−2

(
A −AC + B2

)
. (3.84)

The last two equations show us that

k2
2 − k

2
1 =

(
ϕ′
)2
A−2

(
A −AC + B2

)−2

×
[
−
(
A −AC + B2

)3

+A3
((
A −AC + B2

)
(1 − F) + (C − 1)(1 +D)2 − 2BE(1 +D) +AE2

)]
.

(3.85)

By the fact ϕ′ = β−1f−1A−1/2, we obtain

k2
2 − k

2
1 = β−2f−2A−3(A −AC + B2)−2

×
[(
A −AC + B2)3

+A3
((
A −AC + B2)(1 − F) + (C − 1)(1 +D)2 − 2BE(1 +D) +AE2

)]
,

(3.86)

k1 = β−1f−1A−3/2
(
A −AC + B2

)1/2
. (3.87)
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According to our assumption

f =
(

1 − g2 − h2
)−3/2(

1 − g2 − h2 + ġ2 + ḣ2 −
(
ġh − gḣ

)2
)−5/2

×
[
−
(

1 − g2 − h2 + ġ2 + ḣ2 −
(
ġh − gḣ

)2
)3

+
(

1 − g2 − h2
)3(
−
(
g − g̈

)2 −
(
h − ḧ

)2 −
((
gḣ − ġh

)
−
(
ġḧ − g̈ḣ

))2 +
(
gḧ − g̈h

)2
)]
,

(3.88)

we obtain

f = A−3/2
(
A −AC + B2

)−5/2

⎡
⎢⎢⎣

(
A −AC + B2)3

+A3

((
A −AC + B2)(1 − F) + (C − 1)(1 +D)2

−2BE(1 +D) +AE2

)
⎤
⎥⎥⎦. (3.89)

Substituting the above equation into (3.86) and (3.87), we obtain

k1 = −β
(
k2

1 − k
2
2

)
. (3.90)

The proof is completed.

References
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