8 research outputs found

    Hybrid material based on hyaluronan hydrogels and poly(l-lactide-co-1,3-trimethylene carbonate) scaffolds toward a cell-instructive microenvironment with long-term in vivo degradability

    Get PDF
    Degradable polyester-based scaffolds are ideal for tissue engineering applications where long-term structural integrity and mechanical support are a requisite. However, their hydrophobic and unfunctionalized surfaces restrain their tissue-mimetic quality. Instead, hyaluronan (HA) hydrogels are able to act as cell-instructive materials with the ability to recapitulate native tissue, although HA is rapidly metabolized in vivo. Taking advantage of these distinctly diverse material properties, a degradable and concurrent hybrid hydrogel material was developed that combines the short-term tissue-relevant properties of bio-orthogonal crosslinked HA with the long-term structural and mechanical support of poly(l-lactide-co-trimethylene carbonate) (PLATMC) scaffolds. This method rendered the formulation of transparent, minimally swelling hydrogel compartments with a desirable cell-instructive “local” elastic modulus within the scaffold matrix without impeding key material properties of PLATMC. Long-term degradability over 180 days in vivo was realized by the integral PLATMC scaffold architecture obtained through either extrusion-based 3D printing or salt-particulate leaching. Intrinsic diffusion capacity within the hydrogel elicited unaffected degradation kinetics of PLATMC in vivo, despite its autocatalytic bulk degradation characteristics displayed when 3D-printed. The effect of the processing method on the material properties of PLATMC markedly extends to its in vivo degradation characteristics, and essential uniform degradation behavior can be advanced using salt-particulate leaching. Regardless of the scaffold fabrication method, the polymer exhibited a soft and flexible nature throughout the degradation period, governed by the rubbery state of the polymer. Our results demonstrate that the physicochemical properties of the hybrid hydrogel scaffold endow it with the potential to act as a cell instructive microenvironment while not affecting key material properties of PLATMC postprocessing. Importantly, the HA hydrogel does not adversely impact the degradation behavior of PLATMC, a vital aspect in the fabrication of tissue engineering constructs. The results presented herein open new avenues for the adoption of concurrent and well-defined tissue-relevant materials exhibiting the potential to recreate microenvironments for cell encapsulation and drug delivery in vivo while providing essential structural integrity and long-term degradability.publishedVersio

    Intestinal permeability and gene expression after polyethylene and polyamide microplastic ingestion in Wistar rats

    Get PDF
    Microplastic particles are ubiquitous in the environment. However, little is known about their uptake and effects in humans or mammalian model organisms. Here, we studied the effects of pristine polyamide (15–20 µm) and polyethylene (40–48 µm) particles after oral ingestion in rats. The animals received feed containing microplastic particles (0.1% polyamide or polyethylene, or a mixture of both polymers) or a control diet without microplastic particles, for 5 weeks. The permeability of the duodenum was investigated in an Ussing chamber, whereas gene expression and concentration of tight junction proteins were measured in gut tissue and plasma. Microplastic particles were quantified by pyrolysis-gas chromatography/mass spectrometry in rats’ feces. Rats fed with microplastic particles had higher duodenal permeability. Expression of gene coding for the tight junction protein occludin (OCLN) was higher in PE treated animals compared to control or the PA group. No changes in the expression of the gene coding for zonula occludens protein 1 were detected. Occludin protein concentrations were below the limit of detection of the applied method in both gut and plasma. Zonula occludens protein 1 concentrations in the gut were significantly higher in groups exposed to PA and PE as compared to control, while zonula occludens protein 1 concentrations in plasma did not show significant changes. These results demonstrated that short-term exposure to a dose of 0.1% (w/w) microplastic particles in feed had limited effects on duodenal permeability, expression of pro-inflammatory protein genes and tight junction protein genes in the duodenum.publishedVersio

    Spawning time in adult polar cod (Boreogadus saida) altered by crude oil exposure, independent of food availability

    Get PDF
    Fish early life stages are well known for their sensitivity to crude oil exposure. However, the effect of crude oil exposure on adults and their gametes during their spawning period is not well studied. Polar cod, a key arctic fish, may be at risk for crude oil exposure during this potentially sensitive life stage. Additionally, this species experiences lower food availability during their spawning season, with unknown combined consequences. In the present study, wild-caught polar cod were exposed to decreasing levels of a water-soluble fraction (WSF) of crude oil or control conditions and fed either at a low or high feed ration to assess the combined effect of both stressors. Samples were taken during late gonadal development, during active spawning (spawning window), and in the post-spawning period. Histology analysis of gonads from fish sampled during the spawning window showed that oil-exposed polar cod were more likely to have spawned compared to controls. Oil-exposed females had 947 differentially regulated hepatic genes, and their eggs had a higher polycyclic aromatic hydrocarbon body burden compared to controls. Feed ration did not consistently affect polar cod’s response to oil exposure for the endpoints measured, however, did alone result in decreases in some sperm motility parameters. These results suggest that polar cod’s spawning period is a sensitive life event to crude oil exposure, while feed limitation may play a minor role for this supposedly capital breeder. The effects of adult exposure to crude oil on gamete quality and the next generation warrant further investigation

    Intestinal permeability and gene expression after polyethylene and polyamide microplastic ingestion in Wistar rats

    No full text
    Microplastic particles are ubiquitous in the environment. However, little is known about their uptake and effects in humans or mammalian model organisms. Here, we studied the effects of pristine polyamide (15–20 µm) and polyethylene (40–48 µm) particles after oral ingestion in rats. The animals received feed containing microplastic particles (0.1% polyamide or polyethylene, or a mixture of both polymers) or a control diet without microplastic particles, for 5 weeks. The permeability of the duodenum was investigated in an Ussing chamber, whereas gene expression and concentration of tight junction proteins were measured in gut tissue and plasma. Microplastic particles were quantified by pyrolysis-gas chromatography/mass spectrometry in rats’ feces. Rats fed with microplastic particles had higher duodenal permeability. Expression of gene coding for the tight junction protein occludin (OCLN) was higher in PE treated animals compared to control or the PA group. No changes in the expression of the gene coding for zonula occludens protein 1 were detected. Occludin protein concentrations were below the limit of detection of the applied method in both gut and plasma. Zonula occludens protein 1 concentrations in the gut were significantly higher in groups exposed to PA and PE as compared to control, while zonula occludens protein 1 concentrations in plasma did not show significant changes. These results demonstrated that short-term exposure to a dose of 0.1% (w/w) microplastic particles in feed had limited effects on duodenal permeability, expression of pro-inflammatory protein genes and tight junction protein genes in the duodenum

    Attuning to a changing ocean

    Get PDF
    The ocean is a lifeline for human existence, but current practices risk severely undermining ocean sustainability. Present and future social−ecological challenges necessitate the maintenance and development of knowledge and action by stimulating collaboration among scientists and between science, policy, and practice. Here we explore not only how such collaborations have developed in the Nordic countries and adjacent seas but also how knowledge from these regions contributes to an understanding of how to obtain a sustainable ocean. Our collective experience may be summarized in three points: 1) In the absence of long-term observations, decision-making is subject to high risk arising from natural variability; 2) in the absence of established scientific organizations, advice to stakeholders often relies on a few advisors, making them prone to biased perceptions; and 3) in the absence of trust between policy makers and the science community, attuning to a changing ocean will be subject to arbitrary decision-making with unforeseen and negative ramifications. Underpinning these observations, we show that collaboration across scientific disciplines and stakeholders and between nations is a necessary condition for appropriate actions.peerReviewe

    Attuning to a changing ocean

    No full text
    The ocean is a lifeline for human existence, but current practices risk severely undermining ocean sustainability. Present and future social−ecological challenges necessitate the maintenance and development of knowledge and action by stimulating collaboration among scientists and between science, policy, and practice. Here we explore not only how such collaborations have developed in the Nordic countries and adjacent seas but also how knowledge from these regions contributes to an understanding of how to obtain a sustainable ocean. Our collective experience may be summarized in three points: 1) In the absence of long-term observations, decision-making is subject to high risk arising from natural variability; 2) in the absence of established scientific organizations, advice to stakeholders often relies on a few advisors, making them prone to biased perceptions; and 3) in the absence of trust between policy makers and the science community, attuning to a changing ocean will be subject to arbitrary decision-making with unforeseen and negative ramifications. Underpinning these observations, we show that collaboration across scientific disciplines and stakeholders and between nations is a necessary condition for appropriate actions
    corecore