198 research outputs found

    Quantum Correlations and Coherence in Spin-1 Heisenberg Chains

    Get PDF
    We explore quantum and classical correlations along with coherence in the ground states of spin-1 Heisenberg chains, namely the one-dimensional XXZ model and the one-dimensional bilinear biquadratic model, with the techniques of density matrix renormalization group theory. Exploiting the tools of quantum information theory, that is, by studying quantum discord, quantum mutual information and three recently introduced coherence measures in the reduced density matrix of two nearest neighbor spins in the bulk, we investigate the quantum phase transitions and special symmetry points in these models. We point out the relative strengths and weaknesses of correlation and coherence measures as figures of merit to witness the quantum phase transitions and symmetry points in the considered spin-1 Heisenberg chains. In particular, we demonstrate that as none of the studied measures can detect the infinite order Kosterlitz-Thouless transition in the XXZ model, they appear to be able to signal the existence of the same type of transition in the biliear biquadratic model. However, we argue that what is actually detected by the measures here is the SU(3) symmetry point of the model rather than the infinite order quantum phase transition. Moreover, we show in the XXZ model that examining even single site coherence can be sufficient to spotlight the second-order phase transition and the SU(2) symmetry point.Comment: 8 pages. 5 figure

    Antioxidant response of Chlamydomonas reinhardtii grown under different element regimes

    Get PDF
    Nutrient stress is one of the most favorable ways of increasing neutral lipid and high value-added output production by microalgae. However, little is known about the level of the oxidative damage caused by nutrient stress for obtaining an optimal stress level for maximum production of specific molecules. In this study, the antioxidant response of Chlamydomonas reinhardtii grown under element deprivation (nitrogen, sulfur, phosphorus and magnesium) and supplementation (nitrogen and zinc) was investigated. All element regimes caused a decrease in growth, which was most pronounced under N deprivation. Element deprivation and Zn supplementation caused significant increases in H2O2 and lipid peroxidation levels of C.reinhardtii. Decrease in total chlorophyll level was followed by an increase of total carotenoid levels in C.reinhardtii under N and S deprivation while both increased under N supplementation. Confocal imaging of live cells revealed dramatic changes of cell shape and production of neutral lipid bodies accompanied by a decrease of chlorophyll clusters. Antioxidant capacity of cells decreased under N, S and P deprivation while it increased under N and Zn supplementation. Fluctuation of antioxidant enzyme activities in C.reinhardtii grown under different element regimes refers to different metabolic sources of reactive oxygen species production triggered by a specific element absence or overabundance. © 2015 Japanese Society of Phycology

    Determination of chilling temperature effects on nutrient elements composition and distribution in cole (Brassica oleracea L. Cv. Acephala) using the WDXRF spectroscopic technique

    Get PDF
    Cole (Brassica oleracea L. cv. Acephala) is a naturally very hardy species to (at) chilling temperatures. It has been observed that the plant species can be viable even under snow during a cold winter. The cole seedlings were grown in soil for one month. Chilling temperatures were then applied to these seedlings under controlled conditions. These seedlings were subsequently, cut into root tip, root middle part, root upper part, hypocotyl, epicotyl, petiole and leaf and sampled randomly. Concentrations of inorganic elements (Al, Si, P, S, Cl, K, Ca, Fe, and Mg) in the parts were measured by wavelength-dispersive X-ray fluorescence (WDXRF) spectrometry to test chilling temperature effects on nutrient accumulation and distribution within these seedlings. Results indicated that the distribution of some inorganic elements among organs (roots, stem and leaves) of cole plants is significantly altered by chilling stress. There was an association between chilling temperatures and distributions, and accumulations of Ca, Fe, P, Cl, S especially Si and Al in cole seedlings. In addition, the WDXRF technique is a simple, fast, economic and accurate tool for biological studies related to the determining of the amount of plant nutritions in ppm level

    Quantum correlations in a few-atom spin-1 Bose-Hubbard model

    Get PDF
    We study the thermal quantum correlations and entanglement in spin-1 Bose-Hubbard model with two and three particles. While we use negativity to calculate entanglement, more general non-classical correlations are quantified using a new measure based on a necessary and sufficient condition for zero-discord state. We demonstrate that the energy level crossings in the ground state of the system are signalled by both the behavior of thermal quantum correlations and entanglement

    New physics effects to the lepton polarizations in the B -> K l^+ l^- decay

    Get PDF
    Using the general, model independent form of the effective Hamiltonian, the general expressions of the longitudinal, normal and transversal polarization asymmetries for (l^-) and (l^+) and combinations of them for the exclusive (B -> K l^+ l^-) decay are found. The sensitivity of lepton polarizations and their combinations on new Wilson coefficients are studied. It is found that there exist regions of Wilson coefficients for which the branching ratio coincides with the Standard Model result while the lepton polarizations differ substantially from the standard model prediction. Hence, studying lepton polarization in these regions of new Wilson coefficients can serve as a promising tool for establishing new physics beyond the Standard Model.Comment: 18 pp, 14 figures (postscript formatted), LaTex formatte

    Evaluation of type C fly ash in the production of composite material

    Get PDF
    Paper presented at the 9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Malta, 16-18 July, 2012.In this study, the availability as a new composite material of the class C fly ashes which have negative effects on environment was investigated. First of all, the properties of fly ash and polypropylene have been identified. By making use of the obtained results, the availability of fly ash and polypropylene materials was investigated in production of a new composite material. For this purpose, by using type C fly ash of thermal power plants in mass ratios of 10% - 60%, a new composite material was produced. To determine mechanical and physical properties of the produced composite samples, thermal conductivity, compressive strength, water absorption capacity, and abrasive loss were performed. From the results, it was witnessed that both environmental problems can be reduced and economical profit can be achieved by means of energy saving.dc201

    Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat

    Get PDF
    One major strategy to increase the level of zinc (Zn) and iron (Fe) in cereal crops, is to exploit the natural genetic variation in seed concentration of these micronutrients. Genotypic variation for Zn and Fe concentration in seeds among cultivated wheat cultivars is relatively narrow and limits the options to breed wheat genotypes with high concentration and bioavailability of Zn and Fe in seed. Alternatively, wild wheat might be an important genetic resource for enhancing micronutrient concentrations in seeds of cultivated wheat. Wild wheat is widespread in diverse environments in Turkey and other parts of the Fertile Crescent (e.g., Iran, Iraq, Lebanon, Syria, Israel, and Jordan). A large number of accessions of wild wheat and of its wild relatives were collected from the Fertile Crescent and screened for Fe and Zn concentrations as well as other mineral nutrients. Among wild wheat, the collections of wild emmer wheat, Triticum turgidum ssp. dicoccoides (825 accessions) showed impressive variation and the highest concentrations of micronutrients, significantly exceeding those of cultivated wheat. The concentrations of Zn and Fe among the dicoccoides accessions varied from 14 to 190 mg kg(-1) DW for Zn and from 15 to 109 mg kg(-1) DW for Fe. Also for total amount of Zn and Fe per seed, dicoccoides accessions contained very high amount of Zn (up to 7 mug per seed) and Fe (up to 3.7 mug per seed). Such high genotypic variation could not be found for phosphorus, magnesium, and sulfur. In the case of modern cultivated wheat, seed concentrations of Zn and Fe were lower and less variable when compared to wild wheat accessions. There was a highly significant positive correlation between seed concentrations of Fe and Zn. Screening different series of dicoccoides substitution lines revealed that the chromosome 6A, 6B, and 5B of dicoccoides resulted in greater increase in Zn and Fe concentration when compared to their recipient parent and to other chromosome substitution lines. The results indicate that Triticum turgidum L. var. dicoccoides (wild emmer) is an important genetic resource for increasing concentration and content of Zn and Fe in modern cultivated wheat

    Careers in context: An international study of career goals as mesostructure between societies’ career-related human potential and proactive career behavior

    Get PDF
    Careers exist in a societal context that offers both constraints and opportunities for career actors. Whereas most studies focus on proximal individual and/or organisational‐level variables, we provide insights into how career goals and behaviours are understood and embedded in the more distal societal context. More specifically, we operationalise societal context using the career‐related human potential composite and aim to understand if and why career goals and behaviours vary between countries. Drawing on a model of career structuration and using multilevel mediation modelling, we draw on a survey of 17,986 employees from 27 countries, covering nine of GLOBE's 10 cultural clusters, and national statistical data to examine the relationship between societal context (macrostructure building the career‐opportunity structure) and actors' career goals (career mesostructure) and career behaviour (actions). We show that societal context in terms of societies' career‐related human potential composite is negatively associated with the importance given to financial achievements as a specific career mesostructure in a society that is positively related to individuals' proactive career behaviour. Our career mesostructure fully mediates the relationship between societal context and individuals' proactive career behaviour. In this way, we expand career theory's scope beyond occupation‐ and organisation‐related factors
    corecore