15 research outputs found

    ELVIS - ELectromagnetic Vector Information Sensor

    Get PDF
    The ELVIS instrument was recently proposed by the authors for the Indian Chandrayaan-1 mission to the Moon and is presently under consideration by the Indian Space Research Organisation (ISRO). The scientific objective of ELVIS is to explore the electromagnetic environment of the moon. ELVIS samples the full three-dimensional (3D) electric field vector, E(x,t), up to 18 MHz, with selective Nyqvist frequency bandwidths down to 5 kHz, and one component of the magnetic field vector, B(x,t), from a few Hz up to 100 kHz.As a transient detector, ELVIS is capable of detecting pulses with a minimum pulse width of 5 ns. The instrument comprises three orthogonal electric dipole antennas, one magnetic search coil antenna and a four-channel digital sampling system, utilising flexible digital down conversion and filtering together with state-of-the-art onboard digital signal processing.Comment: 8 pages, 3 figures. Submitted to the DGLR Int. Symposium "To Moon and Beyond", Bremen, Germany, 2005. Companion paper to arXiv:astro-ph/050921

    Tradeoffs and synergies in wetland multifunctionality: A scaling issue

    Get PDF
    Wetland area in agricultural landscapes has been heavily reduced to gain land for crop production, but in recent years there is increased societal recognition of the negative consequences from wetland loss on nutrient retention, biodiversity and a range of other benefits to humans. The current trend is therefore to re-establish wetlands, often with an aim to achieve the simultaneous delivery of multiple ecosystem services, i.e., multifunctionality. Here we review the literature on key objectives used to motivate wetland re-establishment in temperate agricultural landscapes (provision of flow regulation, nutrient retention, climate mitigation, biodiversity conservation and cultural ecosystem services), and their relationships to environmental properties, in order to identify potential for tradeoffs and synergies concerning the development of multifunctional wetlands. Through this process, we find that there is a need for a change in scale from a focus on single wetlands to wetlandscapes (multiple neighboring wetlands including their catchments and surrounding landscape features) if multiple societal and environmental goals are to be achieved. Finally, we discuss the key factors to be considered when planning for re-establishment of wetlands that can support achievement of a wide range of objectives at the landscape scale

    Priorities and interactions of Sustainable Development Goals (SDGs) with focus on wetlands

    Get PDF
    Wetlands are often vital physical and social components of a country's natural capital, as well as providers of ecosystem services to local and national communities. We performed a network analysis to prioritize Sustainable Development Goal (SDG) targets for sustainable development in iconic wetlands and wetlandscapes around the world. The analysis was based on the information and perceptions on 45 wetlandscapes worldwide by 49 wetland researchers of the GlobalWetland Ecohydrological Network (GWEN). We identified three 2030 Agenda targets of high priority across the wetlandscapes needed to achieve sustainable development: Target 6.3-'Improve water quality'; 2.4-'Sustainable food production'; and 12.2-'Sustainable management of resources'. Moreover, we found specific feedback mechanisms and synergies between SDG targets in the context of wetlands. The most consistent reinforcing interactions were the influence of Target 12.2 on 8.4-'Efficient resource consumption'; and that of Target 6.3 on 12.2. The wetlandscapes could be differentiated in four bundles of distinctive priority SDG-targets: 'Basic human needs', 'Sustainable tourism', 'Environmental impact in urban wetlands', and 'Improving and conserving environment'. In general, we find that the SDG groups, targets, and interactions stress that maintaining good water quality and a 'wise use' of wetlandscapes are vital to attaining sustainable development within these sensitive ecosystems. © 2019 by the authors

    Publisher Correction: Hydro-climatic changes of wetlandscapes across the world

    Get PDF
    Assessments of ecosystem service and function losses of wetlandscapes (i.e., wetlands and their hydrological catchments) suffer from knowledge gaps regarding impacts of ongoing hydro-climatic change. This study investigates hydro-climatic changes during 1976–2015 in 25 wetlandscapes distributed across the world’s tropical, arid, temperate and cold climate zones. Results show that the wetlandscapes were subject to precipitation (P) and temperature (T) changes consistent with mean changes over the world’s land area. However, arid and cold wetlandscapes experienced higher T increases than their respective climate zone. Also, average P decreased in arid and cold wetlandscapes, contrarily to P of arid and cold climate zones, suggesting that these wetlandscapes are located in regions of elevated climate pressures. For most wetlandscapes with available runoff (R) data, the decreases were larger in R than in P, which was attributed to aggravation of climate change impacts by enhanced evapotranspiration losses, e.g. caused by land-use changes

    Francisella tularensis in Swedish predators and scavengers

    No full text
    Tularaemia is a zoonotic disease, in Europe caused by Francisella tularensis subsp. holarctica. Many lagomorphs and a variety of small rodents are wildlife species prone to develop clinical disease, while predators and scavengers are relatively resistant and may serve as sentinels. Blood samples from 656 Swedish wild predators and scavengers were serologically investigated using slide agglutination and microagglutination. In the slide agglutination test, 34 seropositive animals were detected, and they were found among all species investigated: brown bear (Ursus arctos), Eurasian lynx (Lynx lynx), raccoon dog (Nyctereutes procyonoides), red fox (Vulpes vulpes), wild boar (Sus scrofa), wolf (Canis lupus) and wolverine (Gulo gulo). Due to haemolysis the microagglutination test was more difficult to read at low titres, and only 12 animals were classified as seropositive. F. tularensis subsp. holarctica was detected by a polymerase chain reaction in lymphatic tissues of the head in one brown bear, one red fox and one wolf. The significance of this finding regarding possible latency of infection is not clear. In conclusion, the results of this study indicate that all predator and scavenger species included in this study may serve as sentinels for tularaemia in Sweden. Their role as reservoirs is unclear.</p

    Tradeoffs and synergies in wetland multifunctionality: A scaling issue

    Get PDF
    Wetland area in agricultural landscapes has been heavily reduced to gain land for crop production, but in recent years there is increased societal recognition of the negative consequences from wetland loss on nutrient retention, biodiversity and a range of other benefits to humans. The current trend is therefore to re-establish wetlands, often with an aim to achieve the simultaneous delivery of multiple ecosystem services, i.e., multifunctionality. Here we review the literature on key objectives used to motivate wetland re-establishment in temperate agricultural landscapes (provision of flow regulation, nutrient retention, climate mitigation, biodiversity conservation and cultural ecosystem services), and their relationships to environmental properties, in order to identify potential for tradeoffs and synergies concerning the development of multifunctional wetlands. Through this process, we find that there is a need for a change in scale from a focus on single wetlands to wetlandscapes (multiple neighboring wetlands including their catchments and surrounding landscape features) if multiple societal and environmental goals are to be achieved. Finally, we discuss the key factors to be considered when planning for re-establishment of wetlands that can support achievement of a wide range of objectives at the landscape scale

    Thermal ion imagers and Langmuir probes in the Swarm electric field instruments

    No full text
    The European Space Agency's three Swarm satellites were launched on 22 November 2013 into nearly polar, circular orbits, eventually reaching altitudes of 460 km (Swarm A and C) and 510 km (Swarm B). Swarm's multiyear mission is to make precision, multipoint measurements of low-frequency magnetic and electric fields in Earth's ionosphere for the purpose of characterizing magnetic fields generated both inside and external to the Earth, along with the electric fields and other plasma parameters associated with electric current systems in the ionosphere and magnetosphere. Electric fields perpendicular to the magnetic field.B are determined through ion drift velocity v(i) and magnetic field measurements via the relation.E. = -.vi x.B. Ion drift is derived from two-dimensional images of low-energy ion distribution functions provided by two Thermal Ion Imager (TII) sensors viewing in the horizontal and vertical planes;v(i) is corrected for spacecraft potential as determined by two Langmuir probes (LPs) which also measure plasma density ne and electron temperature T-e. The TII sensors use a microchannel-plate-intensified phosphor screen imaged by a charge-coupled device to generate high-resolution distribution images (66 x 40 pixels) at a rate of 16 s(-1). Images are partially processed on board and further on the ground to generate calibrated data products at a rate of 2 s(-1); these include.vi,.E., and ion temperature T-i in addition to electron temperature Te and plasma density n(e) from the LPs
    corecore