269 research outputs found
Localization of wave fields in lower hybrid cavities
International audienceWe investigate lower hybrid wave trapping in cylindrically symmetric density depletions in the electrostatic approximation. Our investigation is inspired by previous observations of such trapping by spacecraft in the auroral region at altitudes up to about 2000km, and the recent discovery of this phenomenon at altitudes above 20000km in the inner magnetosphere. No particular shape is assumed for the density depletion, which need not be strictly zero outside some value of the radial coordinate r. Important previously known properties concerning parabolic density depletions extending to finite r are shown to hold also for arbitrary shapes and infinite extent: for a given parallel wave number kz, modes below the ambient lower hybrid frequency fLH are trapped in the density depletion (in the sense that they are evanescent outside the cavity), have a discrete spectrum and rotate in a left-handed sense, while there is a continuous spectrum of freely propagating right-handed rotating modes above fLH. New results are such that even though the density depletion may go to zero slowly with increasing r, and thus be essentially infinite in extent, there is a maximum distance within which a trapped mode with given kz and azimuthal mode number m may propagate. Furthermore, we find that for any monotonic density cavity and given kz, there is a local relation between plasma density gradient and the lowest possible frequency that can be trapped. We combine our theoretical results with spacecraft observations to find an upper bound on kz. Our examples indicate that the length of the cavities is larger than the width by a factor of at least 100
Observations of lower hybrid cavities in the inner magnetosphere by the Cluster and Viking satellites
International audienceObservations by the Viking and Cluster satellites at altitudes up to 35000km show that Lower Hybrid Cavities (LHCs) are common in the inner magnetosphere. LHCs are density depletions filled with waves in the lower hybrid frequency range. The LHCs have, until recently, only been found at altitudes up to 2000km. Statistics of the locations and general shape of the LHCs is performed to obtain an overview of some of their properties. In total, we have observed 166 LHCs on Viking during 27h of data, and 535 LHCs on Cluster during 87h of data. These LHCs are found at invariant latitudes from the auroral region to the plasmapause. A comparison with lower altitude observations shows that the LHC occurrence frequency does not scale with the flux tube radius, so that the LHCs are moderately rarer at high altitudes. This indicates that the individual LHCs do not reach from the ionosphere to 35000km altitude, which gives an upper bound for their length. The width of the LHCs perpendicular to the geomagnetic field at high altitudes is a few times the ion gyroradius, consistent with observations at low altitudes. The estimated depth of the density depletions vary with altitude, being larger at altitudes of 20000-35000km (Cluster, 10-20%), smaller around 1500-13000km (Viking and previous Freja results, a few percent) and again larger around 1000km (previous sounding rocket observations, 10-20%). The LHCs in the inner magnetosphere are situated in regions with background electrostatic hiss in the lower hybrid frequency range, consistent with investigations at low altitudes. Individual LHCs observed at high altitudes are stable at least on time scales of 0.2s (about the ion gyro period), which is consistent with previous results at lower altitudes, and observations by the four Cluster satellites show that the occurrence of LHCs in a region in space is a stable phenomenon, at least on time scales of an hour
On the Origin of Fluctuations in the Cusp Diamagnetic Cavity
We have analyzed Cluster magnetic field and plasma data during high‐altitude cusp crossing on 14 February 2003. Cluster encountered a diamagnetic cavity (DMC) during northward interplanetary magnetic field (IMF) conditions, and as IMF rotated southward, the spacecraft reencountered the cavity more at the sunward side. The DMC is characterized by a high level of magnetic field fluctuations and high‐energy electrons and protons. Ultralow‐frequency turbulence has been suggested as a mechanism to accelerate particles in DMC. We demonstrate in this paper for the first time that many of the low‐frequency fluctuations in the cavity are back and forth motion of the DMC boundaries over the spacecraft and transient reconnection signatures. We also find examples of some isolated high‐amplitude waves that could possibly be nonlinear kinetic magnetosonic modes. The lack of strong wave power at the vicinity of local ion cyclotron frequency in the DMC suggests that perhaps a mechanism other than wave‐particle heating is a dominant source for ion heating in DMCs
Strong Magnetic Field Fluctuations within Filamentary Auroral Density Cavities Interpreted as VLF Saucer Sources
The Geoelectrodynamics and Electro-Optical Detection of Electron and SuprathermalIon Currents (GEODESIC) sounding rocket encountered more than 100 filamentary densitycavities associated with enhanced plasma waves at ELF (3 kHz) and VLF (310 kHz)frequencies and at altitudes of 800990 km during an auroral substorm. These cavities weresimilar in size (20 m diameter in most cases) to so-called lower-hybrid cavities (LHCs)observed by previous sounding rockets and satellites; however, in contrast, many of theGEODESIC cavities exhibited up to tenfold enhancements in magnetic wave powerthroughout the VLF band. GEODESIC also observed enhancements of ELF and VLFelectric fields both parallel and perpendicular to the geomagnetic field B0 within cavities,though the VLF E field increases were often not as large proportionally as seen in themagnetic fields. This behavior is opposite to that predicted by previously published theoriesof LHCs based on passive scattering of externally incident auroral hiss. We argue thatthe GEODESIC cavities are active wave generation sites capable of radiating VLF wavesinto the surrounding plasma and producing VLF saucers, with energy supplied by cold,upward flowing electron beams composing the auroral return current. This interpretation issupported by the observation that the most intense waves, both inside and outside cavities,occurred in regions where energetic electron precipitation was largely inhibited orabsent altogether. We suggest that the wave-enhanced cavities encountered by GEODESICwere qualitatively different from those observed by earlier spacecraft because of thefortuitous timing of the GEODESIC launch, which placed the payload at apogee within asubstorm-related return current during its most intense phase, lasting only a few minutes
Nonlinear ion-acoustic (IA) waves driven in a cylindrically symmetric flow
By employing a self-similar, two-fluid MHD model in a cylindrical geometry,
we study the features of nonlinear ion-acoustic (IA) waves which propagate in
the direction of external magnetic field lines in space plasmas. Numerical
calculations not only expose the well-known three shapes of nonlinear
structures (sinusoidal, sawtooth, and spiky or bipolar) which are observed by
numerous satellites and simulated by models in a Cartesian geometry, but also
illustrate new results, such as, two reversely propagating nonlinear waves,
density dips and humps, diverging and converging electric shocks, etc. A case
study on Cluster satellite data is also introduced.Comment: accepted by AS
The disappointment of financial support measures during the COVID-19 pandemic among small business managers’ in Sweden
The COVID-19 pandemic is viewed as an emergent social phenomenon with several negative effects, e.g., financial decline of small businesses, as well as worsened sense of well-being. The aim of this article is to explore small business managers’ perceptions of governmental financial support measures and relate them to how they experienced their own health and consequences on their work environment. This mixed-method study was performed during the COVID-19 pandemic in Sweden. A survey was conducted during the period from October 2020 to February 2021 and answered by 729 small business managers, followed by ten interviews in March 2021. The key result shows that the managers were dissatisfied with the governmental financial support measures implemented. The results show that the attitudes of the small business managers towards the financial support measures may have had a negative impact on their subjective health. The study indicates a mismatch between the needs of small businesses during the COVID-19 pandemic and how society provides resources through support systems. This in turn may have meant a limitation on the government’s ability to assist small business owners with financial support during the pandemic.publishedVersio
Cancer Survivors’ Social Context in the Return to Work Process:Narrative Accounts of Social Support and Social Comparison Information
Purpose: Returning to work is a process that is intertwined with the social aspects of one’s life, which can influence the way in which that person manages their return to work and also determines the support available to them. This study aimed to explore cancer patients’ perceptions of the role of their social context in relation to returning to work following treatment.
Methods: Twenty-three patients who had received a diagnosis of either urological, breast, gynaecological, or bowel cancer participated in semi-structured interviews examining general perceptions of cancer, work values and perceptions of the potential impact of their cancer diagnosis and treatment on work. Interviews were analysed using the iterative process of Framework Analysis.
Results: Two superordinate themes emerged as influential in the return to work process: Social support as a facilitator of return to work (e.g. co-workers’ support and support outside of the workplace) and Social comparison as an appraisal of readiness to return to work (e.g. comparisons with other cancer patients, colleagues, and employees in other organisations or professions).
Conclusions: Two functions of the social context of returning to work after cancer were apparent in the participants’ narrative: the importance of social support as a facilitator of returning to work and the utilisation of social comparison information in order to appraise one’s readiness to return to work. The role of social context in returning to work has largely been absent from the research literature to date. The findings of this study suggest that social support and social comparison mechanisms may have a significant impact on an individual’s successful return to the workplace
Stochasticity and order: studies of keratinocyte proliferation
A central tenet of stem cell biology has been that proliferating tissues are maintained through a cellular hierarchy comprising of self-renewing stem cells at the apex, multiple lineage-restricted short-lived progenitor cells, and post-mitotic differentiated cells. The wide range of colony sizes in cultured human keratinocytes has been taken to support this hypothesis. Contrary to this model, researchers using genetic lineage tracing in mouse epidermis have inferred a single progenitor population for homeostasis, and a quiescent stem cell population activated upon wounding or genetic mutation.
To study the proliferative behaviour of human keratinocytes, I used live imaging in vitro at single cell resolution. This shows two modes of proliferation: Type 1 cell division is stochastic with equal odds of generating dividing or non-dividing progeny, while Type 2 cell division predominantly produces two dividing daughters. These two modes are sufficient to explain the entire range of colony sizes seen after 7-12 days of culture and does not require a spectrum of proliferative ability.
This insight provides a simple way to study the effects of external factors on cell fate. To exemplify this, I observed the effects of epidermal growth factor (EGF) and the Wnt agonist R-spondin on proliferation. Here I find proliferation in type 2 colonies changes by changing the proportion of cells dividing. This has implications for the limited success of EGF therapies in clinical trials following burns.
To examine clonal contributions to wound repair, I used the mouse oesophageal epithelium which is exclusively composed of, and maintained by, a single progenitor population. I developed a micro-endoscopic wounding technique that produced localised superficial wounds. Here, I found that these wounds healed by uniform contribution from surrounding keratinocytes, demonstrating that reserve stem cells are not obligatory for wound repair.
In summary, my work shows that human keratinocytes in vitro have two, and only two, modes of proliferation: a stochastic mode that is insensitive to external EGF signalling, and a EGF-sensitive exponential mode. Additionally, proliferation during wound repair can occur with stochastically dividing progenitors, and does not obligate stem cell recruitment in vivo
- …
