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Abstract. We investigate lower hybrid wave trapping in
cylindrically symmetric density depletions in the electro-
static approximation. Our investigation is inspired by pre-
vious observations of such trapping by spacecraft in the au-
roral region at altitudes up to about 2000 km, and the recent
discovery of this phenomenon at altitudes above 20 000 km
in the inner magnetosphere. No particular shape is assumed
for the density depletion, which need not be strictly zero out-
side some value of the radial coordinater. Important previ-
ously known properties concerning parabolic density deple-
tions extending to finiter are shown to hold also for arbitrary
shapes and infinite extent: for a given parallel wave number
kz, modes below the ambient lower hybrid frequencyfLH
are trapped in the density depletion (in the sense that they
are evanescent outside the cavity), have a discrete spectrum
and rotate in a left-handed sense, while there is a continuous
spectrum of freely propagating right-handed rotating modes
abovefLH . New results are such that even though the density
depletion may go to zero slowly with increasingr, and thus
be essentially infinite in extent, there is a maximum distance
within which a trapped mode with givenkz and azimuthal
mode numberm may propagate. Furthermore, we find that
for any monotonic density cavity and givenkz, there is a lo-
cal relation between plasma density gradient and the lowest
possible frequency that can be trapped. We combine our the-
oretical results with spacecraft observations to find an upper
bound onkz. Our examples indicate that the length of the
cavities is larger than the width by a factor of at least 100.

Key words. Electromagnetics (general or miscellaneous) –
Magnetospheric physics (plasma waves and instabilities) –
Space plasma phusics (waves and instabilities)

1 Introduction

A Lower Hybrid Cavity (LHC) is a localized density deple-
tion with an increased amplitude of waves in the lower hybrid
frequency range. The same phenomenon is also often called
a Lower Hybrid Solitary Structure. From observations, the
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width of the cavity is a few to a few tens of the ambient
ion gyroradius, and it has a quasi-cylindrical geometry with
the size parallel to the geomagnetic field much bigger than
the perpendicular size, though the parallel extension is less
well known than the perpendicular. Observed density deple-
tions ranges from 0.1% to 90%. LHCs have been observed
in the ionosphere by sounding rockets (e.g. Vago et al., 1992;
Pinçon et al., 1997; Lynch et al., 1999; Knudsen et al., 1999),
and the Freja satellite (e.g. Eriksson et al., 1994; Pécseli
et al., 1996; Dovner et al., 1997; Høymork et al., 2000) at
altitudes up to about 2000 km. Recently, LHCs have been
identified further out in the magnetosphere in the Viking and
Cluster data sets (Tjulin et al., 2003) at altitudes up to above
20 000 km. A recent review of observational and theoretical
work on LHCs has been provided by Schuck et al. (2003).

Initial theoretical work attempted to model LHCs as dy-
namical structures driven by the modulational instability or
other nonlinear collapse mechanisms. However, statistical
investigations (e.g. Ṕecseli et al., 1996; Kjus et al., 1998;
Schuck et al., 2002) have shown that the LHCs observed on
spacecraft are essentially non-transient at least on the time
scale of the observation, which is on the order of 10 ms to
100 ms depending on the spacecraft. This puts the station-
ary, as opposed to dynamical, properties of LHCs into fo-
cus. Seyler (1994) introduced a model of LHCs as two-
dimensional cavity modes in a finite cavity of parabolic
shape, with the boundary condition of vanishing electric field
at infinity. Schuck et al. (1998) described the wave field
in LHCs in terms of electrostatic cavity modes in a finite
parabolic density depletion, but included a parallel wave
number and considered the scattering problem with propa-
gating waves at infinity. This treatment showed a contin-
uous spectrum of right-hand rotating modes above the am-
bient lower hybrid frequencyfLH and a discrete spectrum
of trapped left-hand rotating waves belowfLH , that cannot
propagate outside the depletion. The results very well de-
scribe the properties of LHCs observed on sounding rockets
(Pinçon et al., 1997; Bonnell et al., 1998; Schuck et al., 1998)
and also of a Cluster satellite observation (Tjulin et al., 2003)
for the single event for which data rates allowed such detailed
analysis.
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Calculations have mostly been performed in the electro-
static approximation, with some justification from the cav-
ity width being well below the electron inertial lengthc/ωpe.
Even so, it is clear that electromagnetic effects are of interest,
when studying oscillations belowfLH , as there is no electro-
static mode in this frequency range to couple to. Though the
original equations and numerical examples by Seyler (1994)
included a simplified treatment of wave magnetic fields, lit-
tle has been done on this until the recent work by Hall et al.
(2004), who succeeded in developing a cold electromagnetic
theory for cylindrically symmetric density depletions, and
thus were able to model the coupling of LHC modes to mag-
netosonic waves propagating outside the cavity.

Thermal effects could also become important close to the
lower hybrid frequency, as can be seen from the warm plasma
dispersion relation for lower hybrid waves by Shapiro et al.
(1993),

ω = ωLH

(
1 +

1

2
k2R2

+
mi

2me

k2
z

k2
⊥

)
, (1)

where the parallel wave number much exceeds the perpendic-
ular, i.e.kz�k⊥, ωLH is the lower hybrid resonance angular
frequency in the plasma outside the cavity,mi andme are the
ion and electron masses, and the thermal dispersion length is
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with ωpe and ωce having their usual meanings of electron
plasma and cyclotron angular frequencies, respectively. In
the cold plasma case we haveR=0, so in this case lower
hybrid waves are non-propagating in the limit of vanishing
kz. This suggests that thermal effects could also be impor-
tant for LHCs, at least for frequencies close to the localωLH .
However, the trapped modes in LHCs are usually observed
well below this frequency. Furthermore, Schuck and Bonnell
(2003) have demonstrated in a ray-tracing study that the Hall
effect on the electron motion in a density gradient is much
more important at least in the WKB approximation.

It is clear that extensions of present cold electrostatic
theory for LHC cavity modes to also include thermal and
electromagnetic effects without sacrificing the Hall term are
needed. The considerations above, however, show that it
should still be worthwhile to further explore the cold electro-
static theory introduced by Schuck et al. (1998). An attrac-
tive feature of this model is that it leads to a single Bessel-
like linear ordinary differential equation, which is very suit-
able for model studies. In the following, we will within this
model investigate some properties of this equation for a gen-
eral density profile, particularly addressing the questions of
localization of wave fields. How well are trapped modes con-
fined in a general density cavity? How does the results ob-
tained for parabolic profiles apply to other profiles, for ex-
ample, the Gaussian profiles reported from observations by
Høymork et al. (2000)? What can be said in general terms
about the frequency and wave number of trapped modes and

their relation to the depth and gradients of density cavities?
And can we find a way to estimate the parallel wave number,
kz, using spacecraft observations from perpendicular cross-
ings of LHCs?

2 The basic equations

The waves we are interested in are in the lower hybrid fre-
quency range. In the plasma regions we will consider here,
whereωci.ωpi, this means that the angular frequenciesω

satisfy the conditionωci�ω�ωce, whereωci is the ion cy-
clotron frequency andωpi the ion plasma frequency. This
condition means that the ions can be considered unmag-
netized and the electrons fully magnetized. Following the
derivation of Schuck et al. (1998) for a cold plasma with elec-
trostatic linear perturbations we arrive at the following set of
equations
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where we have assumed the background magnetic fieldB0
to be in thêz-direction, and that the gradients along the mag-
netic field are negligible compared to the perpendicular gra-
dients. To include effects from small inhomogeneities in the
background plasma density, the parameterν has been in-
cluded, so that the background density is given byn0(1+ν)

andn0 is the plasma number density far away from any fluc-
tuations.

Equation (4) is the momentum equation for the ions, where
ϕ is the electrostatic potential. The ion motion is here as-
sumed to depend only on the electric forces. Equation (3)
is the continuity equation for the ions, whereni is the ion
number density. We have also introduced the velocity poten-
tial χ , which gives the ion velocityui=∇χ . It is possible
to introduce this since we are only considering electrostatic
perturbations and the ions are unmagnetized. The motion of
the ions is thus only dependent on the electrostatic potential
ϕ, which makes this simplification valid. We have in Eq. (3)
also assumed that the scale length for the variation of the den-
sity cavity is much larger than the scale length of the plasma
wave perturbations.

Equation (5) is the electron continuity equation, under the
assumption that the electrons are fully magnetized, and hence
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their motion is given by their gyro-center drift motion. The
parameter0, defined in Eq. (8), is the electron density,ne,
modified for the inclusion of polarization drift corrections,
andv is the electron velocity along the magnetic field. Equa-
tion (6) is the momentum equation for the electrons along the
magnetic field, and Eq. (7) is Poisson’s Equation that couples
the dynamics of the ions and the electrons. We have here a
system of six equations with six unknowns.

3 The density cavity and rotating wave modes

We may now introduce a background density variation. We
assume that the density depletion is cylindrically symmetric,
and that the perturbed quantities are of the form

f (r, θ, z, t) = f̃ (r)ei(mθ+kzz−ωt), (9)

wherem is an integer. This is basically an assumption that
the solutions of the system of equations are rotating with re-
spect to the magnetic field. The sense of rotation for these
wave solutions is given by the relative sign betweenω and
m. We may here assumem to be positive, then positiveω
means a right-handed rotation with respect to the magnetic
field and negativeω means a left-handed rotation. The sys-
tem of Eqs. (3–8) can, under these assumptions, be written
as
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where we have introduced
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and used the cylindrically symmetric density depletionν(r).
Now we can find an expression for how the ion density

ni depends on the electrostatic potentialϕ by combining
Eqs. (10) and (11)
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2
⊥
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We may also write0 in terms of the electrostatic potential,
ϕ, by combining Eqs. (12) and (13)
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and thus from Eq. (15) the electron density,ne, is given by
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Inserting our expressions forni andne, Eqs. (19) and (17),
into Eq. (14) and dividing byei(mθ+kzz−ωt), we obtain the
equation(
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for the radial part,ϕ̃(r), of the electrostatic potential. We
may now use the definition of the plasma frequency, and the
lower hybrid frequencyωLH , which in the plasma regions we
are interested in is given by
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to rewrite Eq. (20) as
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In the following we will useωLH to denote the lower hybrid
frequency far from the cavity, and not the local value of the
lower hybrid frequency, which varies as the density varies in
the cavity.

To make Eq. (22) more compact, we can introduce a new
functionA(r), defined by
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which makes it possible for us to write Eq. (22) as

d2ϕ̃
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using the definition of∇̃2
⊥

found in Eq. (16). If the density
cavity is given byν(r)=Cr2

+D, the functionA(r) turns into
a constant and Eq. (24) becomes Bessel’s equation, for which
the solutions are well known (Watson, 1944). This special
case has been investigated by Schuck et al. (1998), where the
density profile was given by

ν(r) =

−1

(
1 −

r2

a2

)
, r < a

0, r > a

. (25)

The result was that inside the cavity the waves were rotat-
ing in a right-handed direction about the magnetic field at
frequencies above the ambient lower hybrid frequency, and
in the left-handed direction belowωLH . Outside the cavi-
ties, all waves had frequencies above the lower hybrid fre-
quency. The waves with frequencies below the lower hybrid
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Fig. 1. The coloured areas give the regions where waves may
exist (Eq. (26)). The cavity has in this example the parabolic
shape used by Schuck et al. (1998), given in Eq. (25). Here we
have used1=0.35, a=10 m, m=1 andkz=0.003 m−1. We have
also assumed the ions to be oxygen ions, andfLH=4600 Hz and
fce=8×105 Hz. Positive frequencies correspond to waves rotat-
ing in the right-handed direction with respect to the magnetic field,
while negative frequencies indicate left-handed rotation. The solid
black line is the limiting frequency,ωm/(2π), given by Eq. (27).
The density profile is also included for comparison.

frequency had a discrete spectrum of eigenfrequencies, and
above the lower hybrid frequency the eigenfrequencies were
continuous. We will here consider the situation for a general
shape,ν(r), of the density depletion.

4 Existence of wave solutions

The behaviour of the solutions of Eq. (24) depends on the
sign of the functionA(r). In the regions whereA(r) is pos-
itive the radial component of the electric field has the gen-
eral behaviour of Bessel functions, and in the regions where
A(r) is negative the behaviour is that of the modified Bessel
functions (Watson, 1944). This means that we have wave
solutions only when

A(r) > 0 . (26)

This condition gives the region where waves may exist, while
the behaviour of individual eigenmodes within this region
are discussed in the next section. The limiting case, where
A(r)=0, is found for

ωm = −
k2
zωcer

m (dν/dr)
. (27)

Assuming thatdν/dr≥0 for all r, we see that the condition
given in Eq. (26) is satisfied for two intervals ofω. The first
interval is given by 0<ωLH<ω<∞, which means that we
always have solutions with|ω|>ωLH , but no solutions with

|ω|<ωLH , that are rotating in a right-handed direction with
respect to the magnetic field. The second interval is for val-
ues ofω between−ωLH andωm, which means left-handed
rotating waves. These waves will be examined closer.

In the following, we assume that(dν/dr)/r is a decreas-
ing function for allr, which is valid for many realistic cavi-
ties. Then, for a givenm andkz, there is a specific value of
the radius,rm, whereωm=−ωLH . This radius is given by

1

rm

dν

dr

∣∣∣∣
r=rm

=
k2
zωce

mωLH
. (28)

Considering propagating (non-evanescent) left-hand rotat-
ing waves, insiderm we have waves at frequencies
−ωLH <ω<ωm<0, while outsiderm there are propagating
waves forωm<ω<−ωLH<0. This means that the waves with
left-handed rotation around the magnetic field have|ω|<ωLH
insiderm, and|ω|>ωLH outsiderm. The radiusrm may be
used as the definition of the extension of the trapped wave
field for a specific wave (givenkz andm). Note that this def-
inition is valid for a rather general shape of the cavity, and
that the density depletion may be much wider than the region
of wave trapping given byrm. The wave electric field for
frequencies belowωLH does not disappear outside the radius
rm, but it becomes exponentially smaller asr→∞.

As an example of the behavior of the waves, we con-
sider the parabolic density profile (25). For the parame-
ters used by Schuck et al. (1998) (1=0.35, a=10 m,m=1,
kz=0.003 m−1), the values ofω and r, where the condi-
tion in Eq. (26) is satisfied, are indicated in Fig. 1, together
with the limiting frequencyωm. The radiusrm inside which
trapped eigenmodes are non-evanescent is marked in the fig-
ure. Three different wave regions are seen in Fig. 1. We have
waves rotating in the right-handed direction with respect to
the background magnetic field for all distances from the cen-
tre of the cavity, but only with frequencies above the ambi-
ent lower hybrid frequency. These waves are marked with
red in Fig. 1. We have left-handed rotating waves above the
lower hybrid frequency for large distances from the cavity
centre, marked with blue. Finally, we have left-handed ro-
tating waves below the lower hybrid frequency, marked with
green, at distances up torm=a from the centre of the cav-
ity. We may note that the abrupt cut-off of all frequencies
belowωLH at rm is a feature of the parabolic density profile,
whererm equalsa, the radius where the density depletion
ends. This is not the case for other density profiles.

We now again consider a more general shape of the density
cavity. Note that Eq. (28) gives a condition on the density
gradient, concerning when the cavity can trap waves. When
the condition

dν

dr
<

k2
zωcer

mωLH
=

(
kz

k̃⊥

)2

k̃⊥

ωce

ωLH
(29)

is satisfied for allr, it is impossible to find a solution to
Eq. (28). Here we have introduced the azimuthal wave num-
berk̃⊥=m/r. From the last part of Eq. (29) it is clear that, for
a given ratiokz/k̃⊥, we must have a sharper density gradient
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for larger k̃⊥ in order for the effects of the cavity to occur.
For a parabolic density profile, as in Eq. (25), this condition
turns into

1

a2
>

k2
zωce

2mωLH
, r < a, (30)

for trapped modes to be possible in the cavity. Thus, the
radiusrm always equalsa, and Eq. (30) gives the condition
for a specific wave (givenkz andm) to be trapped.

The behaviour close to the center of the cavity,r→0, may
also be studied for a rather general cavity shape using the
functionA(r) given in Eq. (23). This function goes to a con-
stant whenr→0, which means that the first term in the co-
efficient in front of ϕ̃ in Eq. (24) is negligible compared to
the second term. Thus, close to the center, we can write the
solution to Eq. (24) as

ϕ̃(r) = Crm
+

D

rm
, (31)

whereC andD are constants. For physical reasons, we must
putD=0 in order to have a bounded solution whenr→0, so
we conclude that the solution must be of the formϕ̃(r)=Crm

close to the center of the cavity. The perpendicular compo-
nents of the wave electric field is then given byE⊥=−∇⊥ϕ,
so that we have{

Er = −Cmrm−1ei(mθ+kzz−ωt)

Eθ = −iCmrm−1ei(mθ+kzz−ωt) . (32)

Form>1 the electric field vanishes at the center of the cavity
and form=1 it is finite with no curvature or gradient. There
is thus no shear in the electric field atr=0.

The conclusion here is that insiderm, we have waves
with right-handed rotation with frequencies above the am-
bient lower hybrid frequency, and left-handed rotation be-
low the lower hybrid frequency. Outside this radius, all non-
evanescent waves have frequencies above the lower hybrid
frequency and can be described as a mix of right- and left-
hand rotating waves, i.e. as the linear waves in a homoge-
neous plasma. We have also found that there is a lower limit,
given by Eq. (27), for the frequencies that may occur inside
a density cavity. Furthermore, there is a condition that the
density gradient must satisfy for waves with frequencies be-
low the ambient lower hybrid frequency to occur. When we
are sufficiently far from the center of the cavity, at a suffi-
ciently small density gradient, the waves are unaffected by
the cavity.

5 Existence of discrete eigenmodes

Above we investigated the general condition for trapped
waves to be able to exist in a density cavity, Eq. (26). We
are also interested in examining the conditions for the exis-
tence of a discrete spectrum of frequencies, i.e. the existence
of discrete eigenmodes. For this purpose it is convenient to
introduce a new function8(r), given by

8(r) =
√

rϕ̃(r) . (33)

With this function, we can rewrite Eq. (24) as

d28

dr2
+
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4r2

)
8 = 0 . (34)

In order to further simplify the notation we introduce a gen-
eralized potential function

V (r) = −
ω2

LH mω

ωci(ω2 − ω2
LH)r

dν

dr
−

1 − 4m2

4r2
, (35)

and a generalized energy parameter

E =
miω

2
LHk2

z

me(ω2 − ω2
LH)

. (36)

These definitions make it possible for us to rewrite Eq. (34)
in a more familiar form, as

−
d28

dr2
+ (V (r) − E) 8 = 0 . (37)

This has the form of a time-independent Schrödinger Equa-
tion, for which we know the behaviour of the solutions for
different combinations ofV (r) and E (see, for instance,
Bransden and Joachain (1989)). Non-evanescent solutions
in a cavity whereV (r)→0 whenr→∞ have a discrete spec-
trum of eigenvalues for the generalized energy, as long as
E<0 and a continuous spectrum otherwise. It is clear from
Eq. (36) that this condition for having a discrete spectrum
is equivalent to|ω|<ωLH . The waves with frequencies be-
low the lower hybrid frequency have a discrete spectrum of
eigenfrequencies, while the waves above the lower hybrid
frequency have a continuous spectrum, for given values of
m andkz. This is in agreement with the results of Schuck
et al. (1998), where the eigenfrequencies for a parabolic den-
sity depletion are found analytically, but for a general den-
sity profile these frequencies have to be found numerically.
Section 4 only gives the possible values of the eigenfrequen-
cies, but this is sufficient to know in most situations, since the
eigenfrequencies often are close to each other (Schuck et al.,
1998).

6 Gaussian cavities

It has been shown by Høymork et al. (2000) that the mea-
sured density profiles of the lower hybrid cavities agree well
with a Gaussian shape. We may then write a typical profile
of a density depletion as

ν(r) = −1e
−

r2

b2 , (38)

where1>0 is the depth of the cavity. In this case the func-
tion A(r), defined in Eq. (23), is given by

A(r) =
miω

2
LH

me
(
ω2 − ω2

LH

) (k2
z +

2m1ω

ωceb2
e
−

r2

b2

)
. (39)
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Fig. 2. The coloured areas show the wave frequencies we theoreti-
cally may find on different distances from the center of the cavity.
In this example we have a density depletion with Gaussian shape
as in Eq. (38), withfce=11 kHz,fLH=250 Hz,1=0.35,b=220 m
andkz=3×10−4 m−1. A positive frequency corresponds to waves
rotating in the right-handed direction, while negative frequencies
indicate left-handed rotation. The solid black line is the limiting
frequency,ωm/(2π). The density profile is included for compari-
son.

The radius of a Gaussian cavity can then, according to
Eq. (28), be written as

rm = b

√
ln

(
21mωLH

k2
zωceb2

)
. (40)

In order for this depletion to be able to have wave modes
below the ambient lower hybrid frequency, we must have a
real value ofrm. This gives a condition for the geometry of
the Gaussian cavity

1

b2
>

k2
z

2m

ωce

ωLH
, (41)

that must be satisfied in the cavity if waves belowωLH are
to be trapped. This condition is the same condition as we
find for the parabolic density profile (25), but in that case the
parameterb is changed toa, the radius of the cavity. Equa-
tion (41) can also be interpreted as giving the maximum pos-
sible value ofkz for a trapped mode, when the geometry of
the cavity is given, which has also been noticed by Schuck
(1999) in the case of parabolic density profile. In Sect. 7 we
use Freja data to statistically estimate the maximum possible
kz for a set of observed LHCs.

In order to find a parabolic density profile (25) that ap-
proximates a Gaussian profile (38), we put some restrictions
on that profile. We want the profile to have the same total
number of particles depleted and in addition one possibility
is to choose the same density depth in the center. These con-
ditions yield that a Gaussian cavity (38) is best approximated
by a parabolic cavity of the same depth and with radius

√
2b,

which can be found by straightforward integration.

As an example of a cavity with a Gaussian density profile,
we consider a hydrogen plasma with an electron cyclotron
frequency of 11 kHz and a lower hybrid frequency of 250 Hz
outside the cavity. These are parameters taken from the first
LHC observation on Cluster (Tjulin et al., 2003). The den-
sity depletion is taken to have1=0.35 andb=220 m, and
kz is assumed to be 3×10−4 m−1. We may note that the ob-
served projected perpendicular wave number for this event
was about 5×10−3 m−1, so the assumed value ofkz satisfies
the conditionkz�k⊥ that was used in the derivations. For
m=1 the values ofω andr, where the condition in Eq. (26)
is satisfied, are indicated in Fig. 2.

The same wave regions as in Fig. 1 are seen in Fig. 2. The
maximum distance from the center of the cavity where the
waves may have frequencies below the ambient lower hy-
brid frequency is about 320 m in this example. Outside this
radius, the density gradient is too weak for the existence of
trapped eigenmodes. The lowest possible wave frequency
inside the cavity is about 68 Hz, which is only about 25% of
the ambient lower hybrid frequency. The local lower hybrid
frequency at the cavity centre is about 245 Hz in this exam-
ple, so the frequency shift is mostly due to effects from the
density gradient, and not the change in local lower hybrid
frequency. The lowest possible actual frequency, that is the
lowest frequency in the discrete frequency spectrum, can be
simply determined only for a parabolic cavity but numerical
investigations can be made for all reasonably smooth cav-
ity shapes. However, the lowest measured frequency inside
the cavity was about 70 Hz, consistent with our prediction
in Fig. 2. Note that the prediction depends on the assumed
value ofkz. In Sect. 8 we use the Cluster event discussed
here and the limiting case of Eq. (26) to estimatekz for an
LHC.

7 Application to Freja statistics

In the following we use the shape of the density depletion
of several LHCs observed during a Freja satellite crossing of
the auroral region to estimate the parallel wave number of
the waves in the cavities. The data in Fig. 3 are taken from
Høymork et al. (2000) and show the widths and depths of the
cavities. We have superimposed contours of maximumkz

(in units of m−1), for differentb (1/e-width) and1 (relative
depth), from relation (41). We have usedm=1, and the typi-
cal valuesωLH/(2π)=2100 Hz andωce/(2π)=8.4×105 Hz.
Since the spacecraft usually does not pass the center of the
cavities, the measured depths in Fig. 3 are smaller than the
actual depths of the cavities, which results in an underesti-
mate of the maximumkz. The estimates of the cavity widths
are however independent of how far from center of the cav-
ity the spacecraft passes since the cavity are assumed to be
Gaussian. This means that the error bars for the measure-
ments in Fig. 3 is one-sided, pointing towards larger depth.
By the the distribution of the measurements it seems unlikely
that the typical cavity corresponds to a value ofkz larger
than about 0.001 m−1, corresponding to a minimum parallel
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Fig. 3. Scatter plot of the measured 1/e-widths and depths of
672 cavities from orbit 1234 of the Freja satellite. Data are taken
from Høymork et al. (2000). We have superimposed contours of
the maximum values ofkz (unit m−1) in red, for given width and
depth of a cavity according to Eq. (41). The parameters used are
m=1,fLH =2100 Hz andfce=8.4×105 Hz. The relative depth cor-
responds to the parameter1 in Eq. (41) and the 1/e-width to b in
the same equation. Underlying dataplot reproduced by permission
of the American Geophysical Union.

wavelength of the order of 6 km. By assuming that the length
of the cavity along the magnetic field is at least one parallel
wavelength, we get an estimate of the minimum cavity length
for these observations to be 6 km. This can be compared with
the measured 1/e-widths of the cavities of about 30 m. The
LHCs are indeed elongated structures.

8 Application to Cluster data

Let us now examine what may be investigated by a spacecraft
that is passing a cavity, as in Fig. 4, wherer0 is the closest ap-
proach to the center of the cavity. Letx=vsct be the distance
travelled by the spacecraft, witht=0 at the closest approach
and vsc is the spacecraft velocity. For a Gaussian density
profile, as in Eq. (38), the measured density time series is

ν(t) = −1e
−

r2
0+x(t)2

b2 = −1e
−

r2
0

b2 e
−

(vsct)2

b2 , (42)

and it is seen that the 1/e-width of the density cavity as mea-
sured by the spacecraft is identical to the widthb in the den-
sity profile. The measured depth, however, differs by a factor
exp(−r2

0/b2) from the actual depth.
The lowest angular frequency that can possibly be found

inside the cavity is given by|ωm| from Eq. (27). As was
noted in Sect. 5, the discreteness of the spectrum may mean
that no wave mode can exist at this frequency, but the eigen-
frequencies found by Schuck et al. (1998) indicates that
modes will exist sufficiently close above this value to give
a reasonable estimate of the lowest frequency, assuming that
m=1. It is then possible to fit the lowest measured frequency

b

x

r

r

vsc

0

Fig. 4. The geometry of a spacecraft passing a lower hybrid cavity.
The distancer0 is the closest approach to the cavity center, and
x=vsct is the distance from the point of closest approach along the
spacecraft trajectory.

with Eq. (27) to obtain an estimate of the parametersr0, 1

andkz. Thus, we may find important parameters for the cav-
ity by measuring the density profile and especially the profile
of the lowest frequency, which usually cannot be well deter-
mined, for example, since the spacecraft spends only a short
time inside the LHC and it is not clear how stationary the
emissions inside the cavity are. The parallel wavelength is
given by 2π/kz, and should be of the size, or smaller, than
the length of the cavity. We may hence usekz to obtain a
lower bound on the length of the cavity.

An attempt to estimatekz has been done using data from
the Cluster event analysed by Tjulin et al. (2003). This is yet
the only LHC event found in the Cluster EFW data, where
the instrument sampling frequency is sufficient for this kind
of analysis. The results are shown in Fig. 5, where the up-
per panel shows the plasma density, determined by using the
spacecraft potential (Pedersen et al., 2001) as measured by
the EFW instrument (Gustafsson et al., 1997). By fitting a
Gaussian to the data, we findb=220 m. The lower panel
shows a wavelet spectrogram of the duskward electric field,
measured by EFW. The line is a fit of|ωm|, from Eqs. (27)
and (42), to the lowest frequency in the spectrogram, us-
ing a nonlinear fitting algorithm, with the resulting param-
eterskz=2.5×10−4 m−1, 1=0.33 andr0=73 m. The par-
allel wavelength for the waves in this cavity is then about
25 km, giving an estimate of the length of the cavity of at
least 25 km. The parameters we found are at least reason-
able, since the maximum possible value ofkz for this geom-
etry, from Eq. (41), is about 5×10−4 m−1, but, as mentioned
above, the errors may be large. A statistical estimate using
several LHCs would increase the reliability.
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Fig. 5. An example on how to apply the theory to measured data,
in this case the Cluster event analyzed by Tjulin et al. (2003). The
dots in the upper panel is the density, derived from the spacecraft
potential from the EFW instrument, and the white line is the fitted
Gaussian (b=220 m). The lower panel is a wavelet spectrogram of
the duskward electric field. The solid line is a fit to the lowest fre-
quency in the spectrogram. We havekz=2.5×10−4 m−1, 1=0.33
andr0=73 m for this fit.

9 Discussion and conclusions

We have in Sect. 7 examined some statistics from the Freja
satellite, and found a maximum possible value ofkz to be
about 10−3 m−1. Typical 1/e-widths,b, of the cavities were
about 30 m. In Sect. 8 we have examined one cavity observed
by one Cluster spacecraft, and obtained a value ofkz of about
2.5×10−4 m−1 for b=220 m. The ratio between the paral-
lel and the perpendicular scale lengths of the cavities thus
seems to be between 100 and 200 for these data sets. Indi-
rect arguments from the signatures of transversely acceler-
ated ions led Vago et al. (1992) to assume that the parallel
extension of LHCs was “probably a large fraction” of the
700–1100 km altitude segment investigated by the TOPAZ II
sounding rocket. Direct observations from the OEDIPUS-C
sounding rocket (Knudsen et al., 1999) showed a lower limit
of the parallel length of the LHCs to be 820 m at an altitude
of 670 km. Our estimates are in line with those observations.

To review the relevance of our results from cold plasma
theory, we reconsider the electrostatic dispersion relation for
lower hybrid waves in a warm homogeneous plasma, as de-
scribed by Eq. (1). Askz→0, the thermal effects become
more important in the homogeneous case, at least close to
the lower hybrid frequency, so we expect that this is also the
case in our inhomogeneous plasma. On the other hand, since
Schuck and Bonnell (2003) have shown that the Hall correc-
tion (the shift in frequency from the density gradient) is more
important than the thermal effects for lower hybrid cavities,
we expect that our results should also hold when thermal ef-
fects are included, at least for trapped modes well belowωLH .
As our estimates ofkz are derived for such trapped modes we

still expect them to be reasonable. The electromagnetic ef-
fects are important to include for examining how the waves
inside the density cavity couple to magnetosonic waves out-
side the cavity, but they should not be important for the fea-
tures of the mainly electrostatic waves that we have studied.

Our conclusions are:

– The results of Schuck et al. (1998) for a parabolic shape
of the density depletion are also valid for more gen-
eral density profiles. The waves inside the cavity, with
frequencies above the ambient lower hybrid frequency,
have a continuous frequency spectrum and are rotating
in a right-handed fashion with respect to the magnetic
field, while the waves with frequencies below the lower
hybrid frequency have a discrete frequency spectrum,
for givenkz, and rotate in a left-handed fashion. These
results also follow from numerical simulations using
a smoothed parabolic density profile (Schuck et al.,
1998), a profile that satisfies the conditions for the re-
sults in this paper to be valid. It may also be noted
that the ray-tracing analysis performed by Schuck and
Bonnell (2003) used a cigar shaped, three-dimensional
Gaussian density depletion.

– Even though the density depletion may go to zero
slowly with increasingr, and thus be very large in
extent, there is a largest distance,rm, within which
a trapped wave, with givenkz and azimuthal mode
numberm, may propagate. This distance is given by
Eq. (28), and it may be taken to define the width of the
wave field for a certain wave mode.

– From Eq. (28) also follows that there is a lower limit on
the density gradient of the cavity for rotating waves with
|ω|�ωLH to occur at all. For given limits onkz andm,
this can be used to define which density cavities should
be regarded as potential LHCs, as opposed to density
depletions without trapped waves.

– There is a lower limit to the frequencies that can exist
in a density cavity, and there is a local relation between
the plasma density gradient and the lowest possible fre-
quency.

– Putting our findings together, we combine theory with
spacecraft observations along approximately perpendic-
ular crossings of LHCs to estimate the parallel wave-
numberkz of the cavities. This also gives an estimate of
the length of a typical cavity along the magnetic field.
Our examples indicate that the length of the cavities is
larger than the width by a factor of at least 100.
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