11 research outputs found

    Nutrient flux and budget in the Ebro estuary

    Full text link
    The Ebro river flows to the Mediterranean coast of Spain. During its final stretch, the Ebro behaves in a similar way to a highly stratified estuary. This paper describes the transport of nutrients to the Ebro estuary, evaluates the general movement of nutrients in the estuarine region, using a mass balance approach, and estimates the amounts of nutrients discharged to the coastal environment. Given the strong saline stratification, this study only includes the surface layer that contains the continental freshwater. The annual nutrient budget for the Ebro estuary shows a net excess for nitrogen and phosphorus, while silicate almost attains equilibrium between addition and removal. There are several reasons for gains in nitrogen and phosphorous: a contribution of dissolved and particulate compounds in the freshwater (some of which are mineralized); a lower uptake of phytoplankton indicated by chlorophyll reduction in the estuary; an entrainment of the nutrient-rich upper part of the salt wedge; and, to a lesser extent, the impact of wastewater and agricultural water use. The biggest load discharged into the Mediterranean Sea by the Ebro is nitrogen, followed by silicate with over 10 000 tons of each deposited annually. Phosphorus is discharged at relatively low concentrations and with an annual load of about 200 t yr¿1.This project was funded by the European Union in the framework of the MAST-III research project: "Preparation and Integration of Analysis Tools towards Operational Forecast of Nutrients in Estuaries of European Rivers (PIONEER)", Reference No. MAS3-CT98-0170.Falco Giaccaglia, SL.; Niencheski, L.; Rodilla Alamá, M.; Romero Gil, I.; González Del Rio Rams, J.; Sierra, J.; Mösso, C. (2010). Nutrient flux and budget in the Ebro estuary. Estuarine, Coastal and Shelf Science. 87(1):92-102. doi:10.1016/j.ecss.2009.12.020S9210287

    Effects of water re-allocation in the Ebro river basin: A multiregional input-output and geographical analysis

    Get PDF
    The quality and availability of water are affected by numerous variables, through which the evaluation of water uses from different perspectives, and policy proposals to save water have now become essential. This paper aims to study water use and the water footprint from a river basin perspective, taking into account regions, sectors, and municipalities, while considering the physical frontier along with the administrative sectors. To this end, we have constructed a multi-regional input-output table for the Ebro river basin, disaggregating the primary sector into 18 different crops and 6 livestock groups. We pay special attention to crop production because it is the most water-consuming industry. The construction of the multi-regional input-output model represents an important contribution to the literature, in itself, since, to the best of our knowledge, it is the first to be built for this large basin. We extend this multi-regional input-output model to assess the water footprint by sectors and regions within the basin. We use these data to propose two scenarios: reallocating final demand to reduce the blue water footprint (scenario 1), and increasing value added (scenario 2). These scenarios outline the opportunity costs of saving water in socioeconomic terms in the basin. In another application, we downscale the multi-regional input-output model results at the municipal level and depict them using a geographical information system, identifying the hotspots and the areas that would pay for the socioeconomic opportunity costs of saving water. Our results suggest that saving 1 hm 3 of blue water could cost around €41, 500 of value added if we consider the entire basin. However, this water re-allocation implies losses and gains at the municipal level: some municipalities would reduce value added by more than €30, 000, while others would gain more than €85, 000 of value added. These tools and results can be useful for policy makers when considering re-allocating water. The contribution and the novelty of this paper is the construction of the multiregional input-output model for the Ebro river basin, and its link with geographical systems analysis at the municipal level

    A Landscape-based Regionalization of Natural Flow Regimes in the Ebro River Basin and its Biological Validation. River Research and Applications

    Full text link
    Flow prediction in ungauged basins is an important task for water resources planning and management, and remains a fundamental challenge for hydroecological research. Based on a previous classification of streams and rivers in the Ebro River basin (Spain), where six natural flowregime types were identified, we apply a new predictive approach of the flow regime type based on climatic and physiographic descriptors. We used a set of easily available environmental variables as discriminant parameters: annual precipitation, annual evapotranspiration, annual air temperature, elevation, catchment area, drainage density and geology. A stepwise landscape-based classification procedure consisting of several stepwise discriminant analyses and canonical discriminant analyses allocated a set of sites with poor or no natural flow data into the flow types defined. Misclassification rates obtained by cross-validation ranged between 1.12% and 11.9%. Additionally, the ecological soundness of the proposed regionalization was tested by the concordance between macroinvertebrate communities and the proposed classification using NMDS and ANOSIM. NMDS resulted in a clear separation of sites into five NFR classes with available macroinvertebrate data, and ANOSIM found significant differences in macroinvertebrate communities among classes

    Effects of water re-allocation in the Ebro river basin: A multiregional input-output and geographical analysis

    No full text
    corecore