118 research outputs found

    The role of natural science collections in the biomonitoring of environmental contaminants in apex predators in support of the EU's zero pollution ambition

    Get PDF
    The chemical industry is the leading sector in the EU in terms of added value. However, contaminants pose a major threat and significant costs to the environment and human health. While EU legislation and international conventions aim to reduce this threat, regulators struggle to assess and manage chemical risks, given the vast number of substances involved and the lack of data on exposure and hazards. The European Green Deal sets a 'zero pollution ambition for a toxic free environment' by 2050 and the EU Chemicals Strategy calls for increased monitoring of chemicals in the environment. Monitoring of contaminants in biota can, inter alia: provide regulators with early warning of bioaccumulation problems with chemicals of emerging concern; trigger risk assessment of persistent, bioaccumulative and toxic substances; enable risk assessment of chemical mixtures in biota; enable risk assessment of mixtures; and enable assessment of the effectiveness of risk management measures and of chemicals regulations overall. A number of these purposes are to be addressed under the recently launched European Partnership for Risk Assessment of Chemicals (PARC). Apex predators are of particular value to biomonitoring. Securing sufficient data at European scale implies large-scale, long-term monitoring and a steady supply of large numbers of fresh apex predator tissue samples from across Europe. Natural science collections are very well-placed to supply these. Pan-European monitoring requires effective coordination among field organisations, collections and analytical laboratories for the flow of required specimens, processing and storage of specimens and tissue samples, contaminant analyses delivering pan-European data sets, and provision of specimen and population contextual data. Collections are well-placed to coordinate this. The COST Action European Raptor Biomonitoring Facility provides a well-developed model showing how this can work, integrating a European Raptor Biomonitoring Scheme, Specimen Bank and Sampling Programme. Simultaneously, the EU-funded LIFE APEX has demonstrated a range of regulatory applications using cutting-edge analytical techniques. PARC plans to make best use of such sampling and biomonitoring programmes. Collections are poised to play a critical role in supporting PARC objectives and thereby contribute to delivery of the EU's zero-pollution ambition.Non peer reviewe

    Low-Carbon Technologies to Remove Organic Micropollutants from Wastewater: A Focus on Pharmaceuticals

    Get PDF
    Pharmaceutical residues are of environmental concern since they are found in several environmental compartments, including surface, ground and waste waters. However, the effect of pharmaceuticals on ecosystems is still under investigation. To date, the removal of these micropollutants by conventional treatment plants is generally ineffective, in addition to producing a considerable carbon footprint. In this sense, to achieve the current zero-pollution ambition, a reduction in the negative impacts of chemical substances such as pharmaceuticals on the environment must be aligned with initiatives such as the European Ecological Compact, Environment Action Programme, and Circular Economy Action Plan, among others. This review provides insight into the key drivers for changing approaches, technologies, and governance of water in Europe (Germany, Switzerland, and the UK), including improving wastewater treatment in sewage treatment plants for the removal of pharmaceuticals and their carbon footprint. In addition, an overview of emerging low-carbon technologies (e.g., constructed wetlands, anaerobic membrane bioreactors, and enzymes) for the removal of pharmaceuticals in sewage treatment works is provided. In general, the removal efficiency of pharmaceuticals could be achieved up to ca. 100% in wastewater, with the exception of highly recalcitrant pharmaceuticals such as carbamazepine (removal <60%). These technologies have the potential to help reduce the carbon footprint of wastewater treatment, which can therefore contribute to the achievement of the Europe Union’s objective of being carbon neutral by 2050

    Mixture Risk Assessment of Complex Real-Life Mixtures—The PANORAMIX Project

    Get PDF
    Humans are involuntarily exposed to hundreds of chemicals that either contaminate our environment and food or are added intentionally to our daily products. These complex mixtures of chemicals may pose a risk to human health. One of the goals of the European Union’s Green Deal and zero-pollution ambition for a toxic-free environment is to tackle the existent gaps in chemical mixture risk assessment by providing scientific grounds that support the implementation of adequate regulatory measures within the EU. We suggest dealing with this challenge by: (1) characterising ‘real-life’ chemical mixtures and determining to what extent they are transferred from the environment to humans via food and water, and from the mother to the foetus; (2) establishing a high-throughput whole-mixture-based in vitro strategy for screening of real-life complex mixtures of organic chemicals extracted from humans using integrated chemical profiling (suspect screening) together with effect-directed analysis; (3) evaluating which human blood levels of chemical mixtures might be of concern for children’s development; and (4) developing a web-based, ready-to-use interface that integrates hazard and exposure data to enable component-based mixture risk estimation. These concepts form the basis of the Green Deal project PANORAMIX, whose ultimate goal is to progress mixture risk assessment of chemicals.Horizon 2020 research and innovation programme, the Green Deal project PANORAMIX Grant Agreement No. 10103663

    Importance of soil science in the European Green Deal

    Get PDF
    This is the Congress inauguration statement of Professor Carmelo Dazzi (President of the European Society for Soil Conservation) to the international conference “Sustainable Management of Cultural Landscapes in the context of the European Green Deal”, held in Santo Stefano di Camastra (Sicily, Italy) jointly organized by the European Society for Soil Conservation and the European Ecocycles Society on November 9-14, 2021

    The role of natural science collections in the biomonitoring of environmental contaminants in apex predators in support of the EU's zero pollution ambition

    Get PDF
    The chemical industry is the leading sector in the EU in terms of added value. However, contaminants pose a major threat and significant costs to the environment and human health. While EU legislation and international conventions aim to reduce this threat, regulators struggle to assess and manage chemical risks, given the vast number of substances involved and the lack of data on exposure and hazards. The European Green Deal sets a ‘zero pollution ambition for a toxic free environment’ by 2050 and the EU Chemicals Strategy calls for increased monitoring of chemicals in the environment. Monitoring of contaminants in biota can, inter alia: provide regulators with early warning of bioaccumulation problems with chemicals of emerging concern; trigger risk assessment of persistent, bioaccumulative and toxic substances; enable risk assessment of chemical mixtures in biota; enable risk assessment of mixtures; and enable assessment of the effectiveness of risk management measures and of chemicals regulations overall. A number of these purposes are to be addressed under the recently launched European Partnership for Risk Assessment of Chemicals (PARC). Apex predators are of particular value to biomonitoring. Securing sufficient data at European scale implies large-scale, long-term monitoring and a steady supply of large numbers of fresh apex predator tissue samples from across Europe. Natural science collections are very well-placed to supply these. Pan-European monitoring requires effective coordination among field organisations, collections and analytical laboratories for the flow of required specimens, processing and storage of specimens and tissue samples, contaminant analyses delivering pan-European data sets, and provision of specimen and population contextual data. Collections are well-placed to coordinate this. The COST Action European Raptor Biomonitoring Facility provides a well-developed model showing how this can work, integrating a European Raptor Biomonitoring Scheme, Specimen Bank and Sampling Programme. Simultaneously, the EU-funded LIFE APEX has demonstrated a range of regulatory applications using cutting-edge analytical techniques. PARC plans to make best use of such sampling and biomonitoring programmes. Collections are poised to play a critical role in supporting PARC objectives and thereby contribute to delivery of the EU’s zero-pollution ambition

    Towards ‘one substance – one assessment’: An analysis of EU chemical registration and aquatic risk assessment frameworks

    Get PDF
    With the Green Deal the EU aims to achieve a circular economy, restore biodiversity and reduce environmental pollution. As a part of the Green Deal a ‘one-substance one-assessment’ (OS-OA) approach for chemicals has been proposed. The registration and risk assessment of chemicals on the European market is currently fragmented across different legal frameworks, dependent on the chemical\u27s use. In this review, we analysed the five main European chemical registration frameworks and their risk assessment procedures for the freshwater environment, covering 1) medicines for human use, 2) veterinary medicines, 3) pesticides, 4) biocides and 5) industrial chemicals. Overall, the function of the current frameworks is similar, but important differences exist between the frameworks\u27 environmental protection goals and risk assessment strategies. These differences result in inconsistent assessment outcomes for similar chemicals. Chemicals are also registered under multiple frameworks due to their multiple uses, and chemicals which are not approved under one framework are in some instances allowed on the market under other frameworks. In contrast, an OS-OA will require a uniform hazard assessment between all different frameworks. In addition, we show that across frameworks the industrial chemicals are the least hazardous for the freshwater environment (median PNEC of 2.60E-2 mg/L), whilst biocides are the most toxic following current regulatory assessment schemes (median PNEC of 1.82E-4 mg/L). Finally, in order to facilitate a successful move towards a OS-OA approach we recommend a) harmonisation of environmental protection goals and risk assessment strategies, b) that emission, use and production data should be made publicly available and that data sharing becomes a priority, and c) an alignment of the criteria used to classify problematic substances

    Geochemical Proxies and Mineralogical Fingerprints of Sedimentary Processes in a Closed Shallow Lake Basin Since 1850

    Get PDF
    AbstractLake systems are essential for the environment, the biosphere, and humans but are highly impacted by anthropogenic activities accentuated by climate change. Understanding how lake ecosystems change due to human impacts and natural forces is crucial to managing their current state and possible future restoration. The high sensitivity of shallow closed lakes to natural and anthropogenic forcing makes these lacustrine ecosystems highly prone to variations in precipitation and sedimentation processes. These variation processes, occurring in the water column, produce geochemical markers or proxies recorded in lake sedimentary archives. This study investigated specific proxies on high-resolution sedimentary archives (2–3 years resolution) of the Trasimeno lake (Central Italy). The Trasimeno lake underwent three different hydrological phases during the twentieth century due to several fluctuations induced mainly by human activities and climate change. The Trasimeno lake, a large and shallow basin located in the Mediterranean area, is a good case study to assess the effects of intense anthropogenic activity related to agriculture, tourism, industry, and climate changes during the Anthropocene. The aim is to identify the main characteristics of the main sedimentary events in the lake during the last 150 years, determining the concentrations of major and trace elements, the amount of organic matter, and the mineralogical composition of the sediments. This type of work demonstrates that studying sediment archives at high resolution is a viable method for reconstructing the lake's history through the evolution/trends of the geochemical proxies stored in the sediment records. This effort makes it possible to assess past anthropogenic impact and, under the objectives of the European Green Deal (zero-pollution ambition for a toxic-free environment), to monitor, prevent, and remedy pollution related to soil and water compartments. Graphical abstrac

    How to measure and maximise the climate impact of EU-funded start-ups. : A report of the Rapid Accelerator of Climate Entrepreneurship (RACE) pilot project – with case studies.

    Get PDF
    This report: - Highlights opportunities for the EU to maximise the climate impact of start-ups supported by the European Innovation Council (EIC) Accelerator and other EU-funded business support programmes - Summarises the Rapid Acceleration of Climate Entrepreneurs (RACE) pilot project, which imple- mented a climate impact forecasting service for start-ups - Includes case studies of nine start-ups that participated in RACE - Provides a ‘portfolio view’ of the 61 start-ups that participated in RACE and the 46 companies that graduated from the programme - Explains EIT Climate-KIC’s ‘portfolio approach’ to climate innovation and investment - Provides an overview of the European Green Deal (EGD) and EU-supported innovatio

    A walk in the PARC:developing and implementing 21st century chemical risk assessment in Europe

    Get PDF
    Current approaches for the assessment of environmental and human health risks due to exposure to chemical substances have served their purpose reasonably well. Nevertheless, the systems in place for different uses of chemicals are faced with various challenges, ranging from a growing number of chemicals to changes in the types of chemicals and materials produced. This has triggered global awareness of the need for a paradigm shift, which in turn has led to the publication of new concepts for chemical risk assessment and explorations of how to translate these concepts into pragmatic approaches. As a result, next-generation risk assessment (NGRA) is generally seen as the way forward. However, incorporating new scientific insights and innovative approaches into hazard and exposure assessments in such a way that regulatory needs are adequately met has appeared to be challenging. The European Partnership for the Assessment of Risks from Chemicals (PARC) has been designed to address various challenges associated with innovating chemical risk assessment. Its overall goal is to consolidate and strengthen the European research and innovation capacity for chemical risk assessment to protect human health and the environment. With around 200 participating organisations from all over Europe, including three European agencies, and a total budget of over 400 million euro, PARC is one of the largest projects of its kind. It has a duration of seven years and is coordinated by ANSES, the French Agency for Food, Environmental and Occupational Health & Safety
    • 

    corecore