32 research outputs found

    A General Approach for Securely Querying and Updating XML Data

    Get PDF
    Over the past years several works have proposed access control models for XML data where only read-access rights over non-recursive DTDs are considered. A few amount of works have studied the access rights for updates. In this paper, we present a general model for specifying access control on XML data in the presence of update operations of W3C XQuery Update Facility. Our approach for enforcing such updates specifications is based on the notion of query rewriting where each update operation defined over arbitrary DTD (recursive or not) is rewritten to a safe one in order to be evaluated only over XML data which can be updated by the user. We investigate in the second part of this report the secure of XML updating in the presence of read-access rights specified by a security views. For an XML document, a security view represents for each class of users all and only the parts of the document these users are able to see. We show that an update operation defined over a security view can cause disclosure of sensitive data hidden by this view if it is not thoroughly rewritten with respect to both read and update access rights. Finally, we propose a security view based approach for securely updating XML in order to preserve the confidentiality and integrity of XML data.Comment: No. RR-7870 (2012

    A function-based access control model for XML databases

    Full text link

    Two-Variable Logic on Data Trees and XML Reasoning

    Get PDF
    International audienceMotivated by reasoning tasks in the context of XML languages, the satisfiability problem of logics on data trees is investigated. The nodes of a data tree have a label from a finite set and a data value from a possibly infinite set. It is shown that satisfiability for two-variable first-order logic is decidable if the tree structure can be accessed only through the child and the next sibling predicates and the access to data values is restricted to equality tests. From this main result decidability of satisfiability and containment for a data-aware fragment of XPath and of the implication problem for unary key and inclusion constraints is concluded

    A Rewrite Approach for Pattern Containment

    Get PDF
    Abstract. In this paper we introduce an approach that allows to handle the containment problem for the fragment XP(/,//,[ ], * ) of XPath. Using rewriting techniques we define a necessary and sufficient condition for pattern containment. This rewrite view is then adapted to query evaluation on XML documents, and remains valid even if the documents are given in a compressed form, as dags

    Characterizing XML Twig Queries with Examples

    Get PDF
    International audienceTypically, a (Boolean) query is a finite formula that defines a possibly infinite set of database instances that satisfy it (positive examples), and implicitly, the set of instances that do not satisfy the query (negative examples). We investigate the following natural question: for a given class of queries, is it possible to characterize every query with a finite set of positive and negative examples that no other query is consistent with.We study this question for twig queries and XML databases. We show that while twig queries are characterizable, they generally require exponential sets of examples. Consequently, we focus on a practical subclass of anchored twig queries and show that not only are they characterizable but also with polynomially-sized sets of examples. This result is obtained with the use of generalization operations on twig queries, whose application to an anchored twig query yields a properly contained and minimally different query. Our results illustrate further interesting and strong connections between the structure and the semantics of anchored twig queries that the class of arbitrary twig queries does not enjoy. Finally, we show that the class of unions of twig queries is not characterizable

    XML Security Views Revisited

    Get PDF
    International audienceIn this paper, we revisit the view based security framework for XML without imposing any of the previously considered restrictions on the class of queries, the class of DTDs, and the type of annotations used to dene the view. First, we show that the full class of Regular XPath queries is closed under query rewriting. Next, we address the problem of constructing a DTD that describes the view schema, which in general needs not be regular. We propose three dierent methods of ap- proximating the view schema and we show that the produced DTDs are indistinguishable from the exact schema (with queries from a class speci c for each method). Finally, we investigate problems of static analysis of security access specications

    Reasoning about XML with temporal logics and automata

    Get PDF
    We show that problems arising in static analysis of XML specifications and transformations can be dealt with using techniques similar to those developed for static analysis of programs. Many properties of interest in the XML context are related to navigation, and can be formulated in temporal logics for trees. We choose a logic that admits a simple single-exponential translation into unranked tree automata, in the spirit of the classical LTL-to-BĂŒchi automata translation. Automata arising from this translation have a number of additional properties; in particular, they are convenient for reasoning about unary node-selecting queries, which are important in the XML context. We give two applications of such reasoning: one deals with a classical XML problem of reasoning about navigation in the presence of schemas, and the other relates to verifying security properties of XML views

    Mu-Calculus Based Resolution of XPath Decision Problems

    Get PDF
    XPath is the standard declarative notation for navigating XML data and returning a set of matching nodes. In the context of XSLT/XQuery analysis, query optimization, and XML type checking, XPath decision problems arise naturally. They notably include XPath containment (whether or not for any tree the result of a particular query is included in the result of a second one), and XPath satisfiability (whether or not an expression yields a non-empty result), in the presence (or the absence) of XML DTDs. In this paper, we propose a unifying logic for XML, namely the alternation-free modal mu-calculus with converse. We show how to translate major XML concepts such as XPath and DTDs into this logic. Based on these embeddings, we show how XPath decision problems can be solved using a state-of-the-art EXPTIME decision procedure for mu-calculus satisfiability. We provide preliminary experiments which shed light, for the first time, on the cost of solving XPath decision problems in practice

    XQuery containment in presence of variable binding dependencies

    Full text link
    corecore