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Abstract
Typically, a (Boolean) query is a finite formula that defines a possibly infinite set of database
instances that satisfy it (positive examples), and implicitly, the set of instances that do not satisfy
the query (negative examples). We investigate the following natural question: for a given class
of queries, is it possible to characterize every query with a finite set of positive and negative
examples that no other query is consistent with.

We study this question for twig queries and XML databases. We show that while twig
queries are characterizable, they generally require exponential sets of examples. Consequently,
we focus on a practical subclass of anchored twig queries and show that not only are they
characterizable but also with polynomially-sized sets of examples. This result is obtained with
the use of generalization operations on twig queries, whose application to an anchored twig
query yields a properly contained and minimally different query. Our results illustrate further
interesting and strong connections between the structure and the semantics of anchored twig
queries that the class of arbitrary twig queries does not enjoy. Finally, we show that the class of
unions of twig queries is not characterizable.
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1 Introduction

One of the central, if not defining, instruments in computer science is using a formula, a
finite syntactic object, to define a (possibly infinite) set of its models. A typical example
are regular expressions that define languages of words. Database queries also fall into this
category, which is best illustrated with Boolean queries: a query q defines the set of instances
satisfying q, positive examples, and implicitly the set of instances that do not satisfy q,
negative examples. In this paper, we study the question of (finite) characterizability: Can
every query be characterized with a finite set of examples? More precisely, given a class of
queries Q is it possible for every q ∈ Q to find a set of examples such that q is the only query
(modulo equivalence) in Q consistent with it i.e., a query satisfying all positive examples and
none of negative examples. And if it is possible, can we say anything about the number and
the sizes of the necessary examples?

The question of characterizability arises naturally in the context of learning/teaching [9, 6]
which deals with the problem of constructing a formula (query) consistent with a given set
of examples. However, research on characterizability has a number of potential applications
of independent interest because it yields way to generate a set of examples consistent with a
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given query. Such examples can be used, for instance, for elementary query engine debugging,
and query visualization and explanation. The exhaustive nature of the examples provided by
characterizability i.e., there is exactly one query satisfying the examples, may also be useful
in final, verification, stages of reverse engineering of database queries.

In this paper, we investigate the problem of characterizability for XML databases and
twig queries [2, 14]. XML documents can be seen as labeled unranked trees and twig queries
are tree-shaped patterns that additionally use a wildcard label ? (matching any label) and
descendant edges (matching a path of positive length). Twig queries are the core of virtually
any XML query language and have been extensively studied in the literature [4]. In particular,
learning twig queries from examples has been previously investigated [19, 5] and the current
paper can be seen as a continuation of this line of work and an attempt at deepening our
understanding of the relationship between a query and its examples.

In essence, our results show that characterizability is a measure of richness of the query
class, which is closely related to its expressive power. We show that unions of twig queries
are not characterizable because virtually any set of examples has infinitely many consistent
queries i.e., the class of unions of twig queries is very rich. On the other hand, the class of
twig queries is less rich, given a tree the number of twig queries satisfied in it is finite, which
allows to show that twig queries are characterizable.

While twig queries are characterizable with finite sets of examples, we show that the
number of necessary examples may be exponential. The main contribution of this paper is
showing that (polynomially) small sets of examples are sufficient to characterize anchored
twig queries [19]. In essence, this subclass of twig queries forbids descendant edges incident
to a ? node, which merely prevents from imposing conditions on ancestry with a lower
bound on depth: “a node x is a ancestor of node y and the path from x to y is of length
≥ k”, where k > 1. While the expressive power does not seem to be significantly restricted
from the practical point of view, this class of twig queries exhibits a very close relationship
between the structure and the semantics: containment of two twig queries is equivalent to
the existence of an embedding between the queries, an equivalence that does not hold for
arbitrary twig queries [13]. This relationship between the structure of the query and its
semantics goes even further [19]: the use of two positive examples of an anchored query q
allows to identify all queries that contain q. We continue to explore this relationship and
deepen its understanding by characterizing the structure of the semi-lattice of anchored twig
queries: for a given anchored twig query q we are interested in the number and the sizes of
the most specific anchored twig queries properly containing q, and interestingly, we show
that their number and their sizes are polynomially small (w.r.t. the size of q). This result is
essential in showing that anchored twig queries have polynomially-sized characterizing sets
of examples.

To understand the existence of an embedding, and hence the containment, between two
anchored twig queries, we study three generalization operations applied to twig queries (cf.
Fig. 5): 1) changing a label to ?, 2) changing the type of an edge from child to descendant,
and 3) removing a node. While natural and elementary, these operations capture precisely
the subclass of injective (ancestor-preserving) embeddings between queries: query p can be
obtained from a query q by applying a sequence of generalization operations if and only
if there is an injective embedding of q into p. Consequently, when applied, in a diligent
manner, to anchored twig queries they allow to characterize the semi-lattice of anchored
twig queries under injective semantics. We also show that anchored twig queries have unique
canonical forms which can be efficiently obtained by iteratively applying the operations
and the unique canonical form is in fact the (size-)minimal equivalent query. This further
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146 Characterizing XML Twig Queries with Examples

illustrates the desirable properties of anchored twig queries as minimization for arbitrary
twig queries is known to be intractable [2, 13]. We point out, however, that classes of twig
queries properly containing anchored twig queries are known to have tractable minimization
based on operations reducing the query [11].

To extend the characterization results from injective to standard semantics, we identify
mapping overlap as the essential difference between the corresponding two type of embeddings:
unlike the injective embedding, the standard embedding of a query q into a query p may
map different fragments of q into the same fragment of p creating an overlap of the images
of the different fragments of q. To address this difference we explore using a duplication
operation that creates separate copies of the fragment of p thus eliminating the overlap.
However, this operation introduces redundancies and may increase arbitrarily the size of
the query. Consequently, it is applied together with different generalization operations to
avoid introducing redundancies and to avoid undesirable growth of the query we devise a
recursive pattern of applying duplication operations that allows to polynomially bound the
number of introduced copies. The number of the generalizations is linear in the size of the
original query, and thanks to applying the duplication operation in a controlled manner,
the size of each generalization is at most quadratic. The generalizations are then used to
construct a set of characterizing examples consisting of a polynomial number of examples
each of polynomially bounded size.

The main contributions of the paper are:
We formulate the problem of characterizability of a Boolean class of XML queries with
examples and study it for classes of twig queries.
We show that unions of twig queries are not characterizable while twig queries alone are
but the number of examples necessary to characterize a twig query may be exponential
in the size of the query.
We investigate characterizability of a rich subclass of anchored twig queries, and propose
a set of natural generalization operations that allows to characterize with a polynomially-
sized set of examples any anchored twig query under the injective (ancestor-preserving)
semantics.
We propose a duplication operation whose diligent use allows to extend the characteriz-
ability to anchored twig queries to the standard semantics.

Related work. Our work is closely related to the scenario of teaching [10, 9, 16] where the
set of examples to be presented is selected by a helpful teacher. Goldman and Kearns [9]
define a sequence of positive and negative examples to be a teaching sequence for a given
concept c if it uniquely specifies c in the concept class C. Hence, this is essentially the same
idea as in our case. They study the properties of a teaching dimension of a concept class
that is a minimum number of examples a teacher has to reveal in order to uniquely identify
any concept in the class. They consider, however, different concept classes then ours, namely
orthogonal rectangles and boolean formulas. Also, teaching sequences for other classes of
boolean formulas has been studied in [18, 3].

Recently, learning and verification of qhorn queries was studied in [1]. qhorn is a special
class of Boolean quantified queries whose underlying form is conjunctions of quantified Horn
expressions. In order to verify that a given query is equivalent to the one intended by a user,
a unique verification set of polynomial size is constructed. The verification set consists of
examples uniquely determining the given query. The verification algorithm classifies some
questions in the set as answers (positive examples) and others as non-answers (negative
examples). The query is incorrect if the user disagrees with any of the query’s classification
of questions in the verification set.
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A number of notions of characterizability has been studied in the context of grammatical
inference [6]. Their work is related to Gold’s classical model [7, 8]. In the first approach
characteristic samples are constructed for a given algorithm. The algorithm must return a
concept consistent with the given sample and for any sample extending the characteristic sam-
ple for the concept c, it has to return c. In another variant characterizability is parametrized
with a set I of algorithms, i.e., for each concept c, its characteristic set must allow any
algorithm from I to identify c. Finally, they introduce the following notion: a concept class
C is polynomially characterizable iff for each concept c there exists a characteristic sample S
of polynomial size such that if another non-equivalent concept c′ is compatible with S then c
is not compatible with the characteristic sample for c′. In our case q is the only query that
is consistent with the characteristic sample for q.

In the learning scenario the main objective is to find a learning algorithm that produces
a formula (query) consistent with a given set of examples [7, 8, 6, 19, 20]. One typically
uses a weaker notion of characteristic sample w.r.t. a given learning algorithm. This
allows learner bias, collusion, e.g., using a fixed order on the alphabet in language inference.
Characterizability is stronger because it implies the existence of a characterizing sample
independent of the learning algorithm (no bias).

Organization. In Section 2 we recall basic notions on XML and twig queries. In Section 3 we
formalize the problem of characterizing queries with examples and show that unions of twig
queries are not characterizable. In Section 4 we show that twig queries are characterizable
but may require exponentially many examples. In Section 5 we recall anchored twig queries
and their fundamental properties. In Section 6 we present basic generalization operations,
show their connection with injective embeddings, and show how to use them to characterize
anchored twig queries under the injective semantics with polynomially small examples. In
Section 7 we show that the generalization operations can be used to minimize anchored twig
query and then show how to extend the approach used in Section 6 to construct polynomially
small sets of examples characterizing anchored twig queries in the standard semantics. In
Section 8 we summarize our results and outline future directions of study.

Acknowledgments. This paper is partially supported by the Polish National Science Centre
grant DEC-2013/09/B/ST6/01535.

2 Basic notions

In this section we recall basic notions used to model XML documents and twig queries.
Throughout this paper we assume an infinite set of node labels Σ which allows us to model
documents with textual values. Also, we fix one special label r ∈ Σ that we use on the root
nodes of all trees and queries.

Trees. We model XML documents with unranked trees whose nodes are labeled with
elements of Σ. Formally, a tree t is a tuple (Nt, roott, parentt, labt), where Nt is a nonempty
finite set of nodes, roott ∈ Nt is the root node, parentt : Nt \{roott} → Nt is a child-to-parent
function, and labt : Nt → Σ is a labeling function. By Tree we denote the set of all trees. An
example of a tree is presented in Fig. 1a. We define a number of additional notions. A leaf is
any node that has no children. A path in t from n to m (of length k) is a sequence of nodes
n = n1, . . . , nk = m such that parentt(ni) = ni−1 for 1 < i ≤ k. Then we also say that n is
an ancestor of m and m is a descendant of n. Note that those two terms are reflexive: every
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Figure 1 Tree, twig query, and embeddings.

node is its own ancestor and descendant. We add the adjective proper to indicate that n and
m are different nodes. The depth of a node is the length of the path from the root to the
node. The height of a tree t, denoted height(t), is the depth of its deepest leaf. The size of t,
denoted size(t), is the number of its nodes.

Queries. In general, a class of Boolean queries is a set Q with an implicitly given function
L : Q → 2Tree that maps every query q ∈ Q to the set L(q) ⊆ Tree of trees that satisfy q.
The base class of queries, that we study in this paper, are (Boolean) twig queries, known also
as tree patterns [2]. Basically, a twig query is an unranked tree that may additionally use
a distinguished wildcard symbol ? as a label and has two types of edges, child and proper
descendant, corresponding to the standard XPath axes. Fig. 1b contains example of a twig
queries: child edges are drawn with a single line and descendant edges with a double line.

Formally, a twig query q is a tuple (Nq, rootq, parentq, labq, edgeq), where Nq is a nonempty
finite set of nodes, rootq is the root node, parentq : Nq \ {rootq} → Nq is a child-to-parent
function, labp : Nq → Σ∪ {?} is a labeling function, and edgeq : Nq \ {rootq} → {child, desc}
is the function that indicates the type of the incoming edge of a non-root node. By Twig
we denote the set of all twig queries. We adapt the standard notions defined for trees (leaf,
path, etc.) to twig queries by ignoring the edgeq component of the query.

Embeddings. We define the semantics of twig queries using the notion of an embedding
which essentially maps nodes of the twig query to the nodes of the tree in a manner consistent
with the semantics of the edges and the node labels. In the sequel, for two x, y ∈ Σ ∪ {?} we
say that x matches y if y 6= ? implies x = y. Note that this relation is not symmetric: the
label a matches ? but ? does not match a. Formally, an embedding of a twig query q in a
tree t is a function λ : Nq → Nt such that:
1. λ(rootq) = roott,
2. labt(λ(n)) matches labq(n) for every node n of q,
3. λ(n) is a proper descendant of λ(parentq(n)) for every n ∈ Nq \ {rootq},
4. λ(n) is a child of λ(parentq(n)) for every n ∈ Nt \ {rootq} such that edgeq(n) = child.
Then, we say that t is satisfies q. Fig. 6 presents all embeddings of the query q0 in tree t0.
The language of a query q ∈ Twig is the set of all trees satisfying q

L(q) = {t ∈ Tree | t satisfies q}.

The notion of an embedding extends in a natural fashion to a pair of queries q, p ∈ Twig: an
embedding of q in p is a function λ : Nq → Np that satisfies the conditions 1, 2, and 3 above
(with t being replaced by p) and the following condition (which ensures that child edges are
mapped to child edges only):
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4′. λ(n) is a child of λ(parentq(n)) and edgep(λ(n)) = child for every n ∈ Nq \ {rootq} such
that edgeq(n) = child.

Then, we write q 4 p. Because a tree can be seen as a twig query, we often abuse the notation
and write t 4 q to indicate that there is an embedding of q in t.

Query containment and equivalence. Given two queries q and p, q is contained in p, in
symbols q ⊆ p, iff L(q) ⊆ L(p). We say that q and p are equivalent, denoted q ≡ p, if
L(q) = L(p). It is well known that for twig queries, the existence of an embedding implies
containment but the converse does not hold in general [13]. There are also significant
computational differences: the containment of twig queries is coNP-complete [17, 15] whereas
testing the existence of an embedding is in PTIME.

3 Characterizing queries with examples

In this section we formally define characterizability of queries and show that unions of twig
queries are not characterizable.

An example is an element of Tree × {+,−}, a pair consisting of a tree and an indicator
of whether the example is positive (+) or negative (−). Every query q defines the set of its
examples L±(q):

L±(q) = L(q)× {+} ∪ (Tree \ L(q))× {−}.

Given a set of examples S, we denote by S+ = {t ∈ Tree | (t,+) ∈ S} and by S− = {t ∈
Tree | (t,−) ∈ S} the sets of respectively positive and negative examples in S. A query q is
consistent with examples S iff S+ ⊆ L(q) and S− ∩ L(q) = ∅ (or simply S ⊆ L±(q)).

I Definition 3.1. A class of queries Q is characterizable iff for every query q ∈ Q, there
exists a finite set of examples Char(q) characterizing q i.e., such that q is the only query in
Q consistent with Char(q) (modulo query equivalence).

Characterizability alone does not ensure any bound on the cardinality of the set of char-
acterizing examples nor any bound on their size. As we show later on, twig queries are
characterizable but the number of necessary examples may be exponential, which may be
undesirable for practical purposes. Therefore, we formalize a variant of characterizability
that ensures a more manageable size of the characterizing set of examples.

I Definition 3.2. A class of queriesQ is succinctly characterizable iff there exists a polynomial
poly(x) such that for every query q ∈ Q there exists a set of examples Char(q) characterizing
q and such that its cardinality is bounded by poly(size(q)) and so is the size of every of its
elements.

3.1 Non-characterizability of unions of twig queries
We now consider the class UTwig consists of finite subsets of twig queries Q = {q1, . . . , qk} ⊆
Twig interpreted in the natural fashion: L(Q) =

⋃
{L(q) | q ∈ Q}. The height of a nonempty

union of twig queries Q is the maximum height of a query in Q. Note that if the height of
tree t is superior to the height of a twig query q, then q is not satisfied in t. Naturally, the
same necessary condition hold for unions of twig queries.

We say that a query Q ∈ UTwig is unsaturated if the set of its negative examples
Tree \ L(Q) is infinite and contains trees of arbitrary height. The universal query {} is not
unsaturated because it has no negative examples. One can, however, easily see that UTwig
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contains unsaturated queries e.g., the singleton query Q0 = {q0} with q0 from Fig. 1b is
unsaturated because any tree that whose root node does not have a b child is a negative
example of Q0.

Now, take any unsaturated query Q ∈ UTwig and a set of examples S consistent with Q.
Let U− = (Tree \ L(Q)) \ S− be the set of all negative examples of Q that are not used in
S. From U− we pick any element t whose height is greater than the height of any negative
example in S. We treat t as a twig query and construct Q′ = Q∪{t}. Clearly, Q′ is consistent
with S because all positive examples S+ are satisfied by Q ⊆ Q′ and none of the negative
examples satisfy the newly added query component t because the height of t is greater than
the height of any of the negative examples. Also, Q and Q′ are not equivalent because t
satisfies Q′ but not Q.

I Theorem 3.3. Unions of twig queries are not characterizable.

Finally, we point out that when applied with diligence the above procedure can be iterated
infinitely thus generating an infinite sequence of queries consistent with the given set of
examples.

4 Characterizability of Twig queries

In this section we show that Twig queries are characterizable but may require a number of
examples exponential in the size of the query.

I Proposition 4.1. Twig queries are characterizable.

Proof. For a tree t ∈ Tree we define the Twig-theory it generates Th(t) = {q ∈ Twig | t ∈
L(q)}, the set of all twig queries that are satisfied by t. First, we show that for any tree its
Twig-theory is finite modulo query equivalence. We observe that the height of any query
q ∈ Th(t) is bound by the height of t and the number of different labels in q is also bounded
by the number of different labels in t. Because we consider only non-equivalent members
of Th(t), no node of q has two identical subtrees rooted at any two children of the node.
The two observations above allow us to inductively prove that the number of non-equivalent
different queries in Th(t) is indeed finite.

Next, for a given twig query q we outline the construction of a characterizing set of
examples. For this, we construct a positive example tq0 obtained from q by replacing every
descendant edge by a child edge and using a fresh label a0 (not used in q) to replace every
?. Note that q ∈ Th(tq0) and that for any p ∈ Th(tq0) that is not equivalent to q there exists
a witness t of the non-equivalence of p and q, which we can use as a positive example, if t
satisfies q but not p, or as a negative example, if t satisfies p but not q. Since Th(tq0) contains
a finite number of queries modulo equivalence, only a finite number of examples is necessary
to construct a set of examples characterizing q. J

Now, we show that twig queries may require exponential number of examples to charac-
terize them.

I Proposition 4.2. For any natural number n there exists a twig query q such that any set
characterizing q contains at least 2n examples.

Proof. For a given natural number n we construct a query q and a set of twig queries U
such that:
1. for each p ∈ U we have p ⊆ q;
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Figure 2 Twig query q requiring exponentially many examples w.r.t. pv.

2. for each p ∈ U we have q 6⊆ p; Moreover, no single positive example t can witness the fact
that any two distinct p1, p2 ∈ U are not equivalent to q;

3. U contains 2n queries.
Hence any set of examples S characterizing q will have at least 2n negative examples used to
distinguish q from queries in U . We construct the query q over the set of labels {a1, . . . an, r}
as illustrated in Fig. 2a.

We also construct an auxiliary set of queries W consists of patterns pv with v ranging
over all {0, 1}-vectors of length n, constructed as presented in Fig. 2b. We show that the set
W satisfies the conditions 2 and 3 and later we use it to construct the set U that satisfies all
conditions.

Clearly, for every vector v we have q 6⊆ pv essentially because A1
i 6⊆ Bki for any i ∈

{1, . . . , n} and k ∈ {0, 1}. Now, take two {0, 1}-vectors v = (k1, . . . , kn) and w = (k′1, . . . , k′n)
that differ at a position j ∈ {1, . . . , n} and w.l.o.g. assume that kj = 0 and k′j = 1. Suppose
now that there exists a tree t that witnesses both the facts q 6⊆ pv and q 6⊆ pw i.e., t satisfies
q but neither pv and pw. Let sj be the j-th branch of q i.e., the branch using A1

j . Since there
is an embedding of q into t, take the path in which the branch sj is embedded into

π = r · a1 · a1 · a1 · . . . aj−1 · aj−1 · aj−1 · aj · τ · aj · aj+1 · aj+1 · aj+1 · . . . an · an · an,

where τ is a possibly empty path fragment. Note that if τ is empty, then π 4 pv, and
thus, t 4 pv. However, if τ is not empty then π 4 pw, and thus, t 4 pw. This contradicts
the assumption that t does not satisfy both pv and pw. Consequently, every query p ∈ W
requires a unique positive example to distinguish it from q.

Now, for two twig queries p and q by p ∩ q we denote the twig query obtained by joining
p and q at the root node (which has the same label). The set of queries U is defined as
U = {q ∩ p | p ∈ W}. Because L(p ∩ q) = L(p) ∩ L(q), every element of U is properly
contained in q and every element of U still requires a separate example to distinguish it
from q. J

5 Anchored twig queries

In this section, we present the class of anchored twig queries and argue that they constitute
a subclass that is functionally very close to twig queries. We also present the construction
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Figure 3 Anchored and non-anchored twig queries.

of representative documents for a given anchored twig query and recall the relationships
between their structure and semantics with their important computational implications.

The class of anchored twig queries imposes restrictions on the mutual use of ? and the
descendant edges.

I Definition 5.1. A twig query is anchored if the following two conditions are satisfied:
1. A //-edge can be incident to a ?-node only if the node is a leaf.
2. A ?-node may be a leaf only if it is incident to a //-edge.
By AnchTwig we denote the set of all anchored twig queries.

A number of anchored and non-anchored queries is presented in Fig. 3. Note that the second
condition requiring a ? leaf to be incident to a descendant edge is merely technical: if the
rule is violated by some ? leaf, we can change its edge to a descendant edge and obtain an
equivalent query (cf. q0 ≡ q′0 in Fig. 3).

In essence, anchored twig queries do not allow the descendant edges touch ? except for
leaves and thus cannot express conditions on ancestry of nodes with a minimal distance
between them. For instance the query p0 (Fig. 3) checks for the existence of a node labeled
a at depth ≥ 2. We do not believe this restriction to be significant one from the practical
point of view.

The reason we use anchored queries is the close relationship between the structure of the
query and its semantics [19]: containment is equivalent to the existence of embedding. More
precisely, for any p, q ∈ AnchTwig we have p ⊆ q iff p 4 q. The same relationship does not
hold for queries that are not anchored e.g., the non-anchored query q0 and the anchored
query q′0 in Fig. 3 are equivalent and in particular q′0 ⊆ q0 but there is no embedding of
q0 into q′0. Consequently, testing the containment is reduced to testing the existence of an
embedding, and therefore, is in PTIME. This stands in contrast with coNP-completeness of
the containment of arbitrary twigs [17, 15].

The main tool used in proving the equivalence of containment and embedding for anchored
queries are containment characterizing trees [13, 19]. For an anchored query q of height k we
construct two trees:
tq

0 is obtained from q by replacing every descendant edge by a child edge and every ? with a
fresh label a0 that is not used by q.

tq
1 is obtained from q by replacing every ? by a1 and every descendant edge by a a2-path of

length k, a1 and a2 are two different fresh labels not used in q and different from a0.
An example of the construction is presented in Fig. 4.

The instrumental result follows.

I Lemma 5.2 ([19]). Take any anchored query q and construct t1
q as described above. For

any query p whose height is bounded by the height of q and that does not use the labels a1
and a2, tq1 4 p implies q 4 p.
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Figure 5 One-step generalization operations (→).

The proof consists of an anchoring technique that normalizes the embedding of p into tq1 and
then translates it to an embedding of p into q. Note that if tq0 4 p, then the height of p is
bounded by the height of q and p does not use a1 and a2. Therefore if both tq0 and tq1 satisfy
p, then q ⊆ p.

The most important implication of Lemma 5.2 is that by using only two positive examples
tq0 and tq1 we only need to care about the queries that properly contain q and provide negative
examples to distinguish q from queries properly containing q. Although their number might
be quite large, we focus only on the most specific ones:

Φ(q) = {q′ ∈ AnchTwig | q ( q′ ∧ @q′′. q ( q′′ ( q′}.

From the view of the semi-lattice of anchored twig queries, we wish to gain an understanding
of its topology to characterize the (outbound) neighborhood of a query.

6 Generalization operations

In this section, we introduce a set of generalization operations and show their connection
with an injective embeddings and how the operations allow us to navigate the semi-lattice
of anchored twig queries under injective semantics. We use those findings to succinctly
characterize anchored twig queries under the injective semantics.

We employ simple generalization operations that we first define on arbitrary twig queries
and later on tailor them to anchored twig queries. There are 3 operations, presented in
Fig. 5, where dashed lines indicate optional arbitrary edges, x, y and z may have arbitrary
labels in Σ ∪ {?} while a ranges over Σ:
δ1 changes the label of a non-? node to ?;
δ2 changes a child edge to a descendant edges;
δ3 removes a node and connects all its children to the parent node with a descendant edge;

We say that q is one-step generalization of p, in symbols p → q, iff q is obtained by
performing one of the 3 generalization operations.
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Figure 6 Injective embeddings t0 4◦ q0 and q2 4◦ q1.

6.1 Injective embeddings
There is a close connection between applying sequences of generalization operations and the
existence of a special kind of injective embeddings. Formally, an embedding of λ of q into p
is injective if it additionally satisfies the condition:
5. λ(n1) is an ancestor of λ(n2) in p if and only if n1 is an ancestor of n2 in q, for any two

nodes n1 and n2 of q.
We write p 4◦ q if there is an injective embedding of q into p. We define analogously the
injective embeddings of a twig query into a tree. Fig. 6 presents an example of an injective
embedding of q0 into t0.

We point out that any injective embedding is an injective function but the converse does
not necessarily holds (cf. q0 and t1 in Fig. 6). This however will not lead to confusion as
we do not consider embeddings that are injective functions while violating condition 5. We
define the injective semantics of twig queries as L◦(q) = {t ∈ Tree | t 4◦ q} and by q ⊆◦ p
denote L◦(q) ⊆ L◦(p). The anchoring technique of Lemma 5.2 can be easily adapted to
injective embeddings because injective embeddings are under closed composition.

I Corollary 6.1. For any p, q ∈ AnchTwig, p ⊆◦ q iff p 4◦ q iff p→∗ q.

The connection between the generalization operations and injective embeddings is quite
natural. While it is quite obvious that p →∗ q implies p 4◦ q, the converse is also true
because the existence of an injective embedding of q into p ensures that all fragments of q
match areas of p in a configuration that allows to easily identify the generalization operations
required to transform p into q, cf. the injective embedding of q1 into q2 in Fig. 6. Hence,

I Lemma 6.2. For arbitrary twig queries p, q ∈ Twig we have p→∗ q iff p 4◦ q .

Finally, we point out, however, alternative types of injective embeddings have been identified
and used in the literature (cf. [12]), for our purposes any type of injective embeddings can
be used. However, the set of necessary basic generalization operations (Fig. 5) depends on
the chosen type of injective embedding, and we have chosen the type of injective embeddings
known as ancestor-preserving embeddings because the generalization operations seems to be
the most natural.

6.2 Generalizations of anchored twig queries
We wish to use the connection between generalization operations and the containment in
order to map out the semi-lattice 〈AnchTwig,⊆◦〉 of anchored twig queries under the injective
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Figure 7 Applying generalization operations to anchored twig queries.

semantics. More precisely, for a given anchored query p we wish to know the set of anchored
queries Φ◦(p) in the immediate (outgoing) neighborhood of p.

Φ◦(q) = {q′ ∈ AnchTwig | q (◦ q′ ∧ @q′′ ∈ AnchTwig. q (◦ q′′ (◦ q′}.

Lemma 6.2 encourages us to approach this challenge with the use of generalization operations
tailored to anchored queries.

Given two anchored queries p, q ∈ AnchTwig, we say that q is an immediate anchored
generalization of p, in symbols p /◦ q, iff p →+ q and there is no z ∈ AnchTwig such that
p→+ z and z →+ q. Essentially, the immediate anchored generalization relation defines the
Hasse diagram of the semi-lattice of the anchored twig queries under injective semantics, and
therefore, Φ◦(p) = {p′ ∈ AnchTwig | p /◦ p′}. We next show how /◦ can be defined in terms
of a small number of macros consisting of sequences of generalization operations.

To obtain an immediate anchored generalization of an anchored twig query we apply
diligently the generalizations operations, making sure that: 1) the end result is an anchored
twig query and 2) there is no intermediate anchored twig query that can be obtained on
an alternative path. In particular, the first two generalization operations δ1 and δ2 can be
used as long as they do not yield a query that is not anchored (cf. q1, q2, and q3 in Fig. 7).
The δ3 is more involved. First of all, under certain conditions applying δ3 is not authorized
because an intermediate query can be reached with operations δ1 or δ2 (cf. q4 and q5 in
Fig. 7). Furthermore, while possibly violating the structural constraints of anchored queries,
δ3 can be applied to a non-leaf ? node provided that δ3 is applied to all neighboring ?-nodes
(cf. q6 in Fig. 7).

We state formally the manner in which the generalizations should be used on anchored
twig queries.

I Lemma 6.3 (/◦-operations). For any anchored twig queries p, q ∈ AnchTwig we have that
p /◦ q iff q is obtained from p by applying:
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Figure 9 Characterizing query under the injective semantics.

1. δ1 to an inner node incident to child edges only;
2. δ1 to a leaf node incident to a descendant edge;
3. δ2 to an edge that is not incident to a ? node;
4. δ3 to a leaf node only if it is a ? node or if its parent is a ? node with other children;
5. δ3 to a non-? node incident to descendant edges only;
6. δ3 in a exhaustive manner to a connected area of ? nodes.

In the sequel we refer to the macros from Lemma 6.3 as /◦-operations. We point out
that from the point of view of /◦-operations, any connected area of ? nodes is seen as one
particular node and we identify it with its top most ? node. Note that the number of possible
different applications of /◦-operations to a query p is O(size(p)), and consequently, the Φ◦(p)
contains a polynomial number of queries each of size bounded by the size of p. An example
of construction of Φ◦ is presented in Fig. 8.

6.3 Characterizability of AnchTwig under injective semantics
Because the number of possible immediate anchored generalizations of a query p is O(size(p)),
we can characterize any anchored twig query p under injective semantics with the following
set of examples (with all tq1’s trees using a2-chains of the same length as tp1):

Char◦(p) = {(tp0,+), (tp1,+)} ∪
⋃
{(tq1,−) | q ∈ Φ◦(p)}.

An example of construction of the characterizing set of examples is presented in Fig. 9 for
the query p0 from Fig. 8.

To show that Char◦(p) does indeed characterizes p, take any query q consistent with
Char◦(p). Since q is satisfied by both tp0 and tp1, p 4◦ q and if p would be properly contained
by q, then q would satisfy one of the negative examples in Char◦(p).

I Theorem 6.4. Anchored twig queries are succinctly characterizable under injective seman-
tics.
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Figure 10 Reducing a query.

7 Characterizability of Anchored Twig queries

In this section, we extend the approach presented in the previous section to the standard
semantics of twig queries. The main challenge is to handle possible overlaps of non-injective
embeddings and we introduce a duplication operation whose controlled use ensures succinct
characterizability. There is, however, a lesser challenge that we need to handle first, making
sure that applying a /◦-operation yields a more general query. Solving this challenge also
shows that minimization of anchored twig queries is tractable and can be implemented using
generalization operations which further illustrates the good behavior of the class of anchored
twig queries.

7.1 Reducing anchored twig queries
If we are to base the solution of characterizability on /◦-operations, we must be aware of the
difference between the two semantics, how it can affect the use of /◦-operations, and how to
overcome the difficulties that arise.

The difference between the semantics can be illustrated on the example of query q0 in
Fig. 1b: under the injective semantics it ensures the existence of a node b with at least two
different children, while such constraint cannot be expressed with the standard semantics
(note that neither of the embeddings in Fig. 6 and is ancestor-preserving). In fact, the leaf ?
node in the query q0 is redundant, can be removed, and a smaller equivalent query (under
the standard semantics) is obtained.

The implications on use of /◦-operations are as follows: if we take an anchored query
p and any p′ obtained by applying a /◦-operation., then p needs not properly included
in p′ because p and p′ may be equivalent under the standard semantics. To address this
obstacle we reduce the query p: iteratively apply generalization operations (cf. Fig. 10),
following /◦ at each step, as long as the query remains equivalent to the original one. Note
that a /◦-operation may remove some nodes, rename nodes to ?, and change child edges to
descendant edges. Essentially, it is a monotone process that finishes after O(size(p)) steps.
An anchored twig query p is reduced if it is the end result of this procedure, or more precisely,
if for no p′ ∈ Φ◦(p) we have p′ 4 p.

Interestingly, not only are reduced queries suitable for use in Φ◦ and can be obtained
efficiently, but also they are the unique minimal canonical representatives of all equivalent
queries.

Indeed, we show that an anchored twig query p is not minimal iff there exists an embedding
of p into p other than the identity map, and furthermore it maps at least two nodes to the
same target (an overlap). We can then carefully construct the image p′ of this embedding,
an anchored query whose set of nodes is the range of the embedding (see example in Fig. 10).
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Figure 11 Immediate anchored generalizations versus an embedding with overlap p0 4 q0.

This query is smaller than p and the identity map is an injective embedding of p′ into p,
thus p /∗◦ p′. We point out that tractability of minimization of anchored twig queries is not a
novel result. [11] presents a class of twig queries properly containing AnchTwig for which
minimization is tractable. While the technique is similar to the presented above (but not
identical), it can possibly be used as a more efficient alternative only because we shown that
our reducing method also produces the minimal query.

I Theorem 7.1. For every anchored twig query q there exists a unique reduced equivalent
anchored twig query. Furthermore, this query is the size-minimal query equivalent to q and
can be obtained in time polynomial in the size of q.

7.2 Duplication operation
From now on, we use the standard semantics only. While using /◦-operations on a reduced
query p does construct a set of most specific queries properly containing p, it does not contain
all such queries. Take for instance the query p0 in Fig. 11 together with its immediate
anchored generalizations Φ◦(p0) = {p′0, p′′0 , p′′′0 }. Now take the query q0 (Fig. 11) that has an
embedding into p0, is not equivalent to p0 (there is no embedding of p0 into q0), and note
that it cannot be embedded into any of the immediate anchored generalizations of p0.

This is because the embedding of q0 into p0 overlaps at two a nodes of q0 whose subqueries
have been obtained with applying different generalization operations.

We address the problem of the overlap with what could be seen as a adding a duplication
operation to our system: this operation replaces a subquery rooted at a given node by a
number of identical copies (including the same type of the edge to the parent). Such an
operation would not, however, yield a query more general than the original query, but merely
an equivalent query with redundancies, and therefore, not even reduced. Consequently, we
investigate an augmented variant that applies the duplication operation and then generalizes
every copy. In Fig. 11 the query p∗0 is a query obtained as a result of applying this operation
to p0 at node a. We point out, however, that the definition of this operation is not sufficiently
precise: it is mutually dependent on the definition of generalization, which ideally should use
the new operation. Also, unlike previously used operations which could only decrease the size
of the input query, this operation has the potential to increase the size the query and when
used recursively multiple time, the bounds on the size of the output query are not clear. We
next settle these concerns with an appropriate recursive definition of query generalization.

We define generalizations of a query recursively on its subqueries. A subquery p of q
at a node n ∈ Nq \ {rootq} is essentially the query rooted at n but having additionally the
incoming edge (from the parent) which can be altered by applying /◦-operations to the root
node of q. Naturally, we apply only those operations that are allowed in the context of the
complete query q (thus as if knowing the label of the parent of the root node of p).

We fix a query q and let p be its subquery. A minimal generalization of p is any query
obtained by either:
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1. applying a /◦-operation at the root node of p (appropriately to the context of the root
node in q)

2. replacing the subquery p′ rooted at a child of the root node of p with the set of all
minimal generalizations of p′.

The minimal generalizations of q are obtained by using only the second part of the definition
(because we do not apply generalization operation to the root node). We write q / q′ to
indicate that q′ is a minimal generalization of q. An example of constructing the minimal
generalization of a query is presented in Fig. 12.

A reduced anchored twig query q has at most a linear number of minimal generalizations
(equal to the number of children of the root node). It is not clear how big they can be given
that duplication takes place. We prove a polynomial bound on the size of q′ such that q / q′.
Let n be a node of q, with the path n = n0, n1, . . . , nk = rootq from n to the root of q, and
let `i be the number of children of ni for i ∈ {1, . . . , k}. We show with an inductive proof
that q′ contains O(`1 + · · ·+ `k) copies of the node n. Since `1 + · · ·+ `k is bounded by the
number of nodes of q, each node is duplicated at most size(q) times, and therefore, q′ is of
size O(size(q)2).

With an inductive proof on the structure of an arbitrary embedding between two queries
that are not equivalent, we show that the minimal generalizations of a query q are the only
outbound neighbors of q in the semi-lattice of anchored twig queries under the standard
semantics.

I Lemma 7.2. For any anchored twig query q, Φ(q) = {q′ ∈ AnchTwig | q / q′}.

Consequently, any anchored twig query q can be characterized with a polynomially-sized
set of examples Char(q) = {(tq0,+), (tq1,+)} ∪

⋃
{(tp1,−) | p ∈ Φ(q)} and their sizes are

polynomially bounded by the size of q.

I Theorem 7.3. Anchored twig queries are succinctly characterizable.

8 Conclusions and future work

In the present paper, we have identified and studied a novel problem of characterizing queries
with examples. Our results have demonstrated that characterizability is a measure of richness
of the query class, which is closely related to its expressive power. We have show that while
union of twig queries are not characterizable, twigs alone are but may require exponential
numbers of examples. Through the study of embeddings and generalization operations we
have shown that the class of anchored twig queries is characterizable with a polynomially
sized sets of examples.

Future work. We envision a number of possible future directions. We would like to extend
our study of embeddings to other types of queries that employ this mechanism of defining
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their semantics: conjunctive relational queries and regular path queries for graphs. Naturally,
the goal would to be investigate the problem of characterizability of those database models.
We also intend to explore the use of the proposed constructions of characterizing sets of
examples in the context of grammatical inference [6, 7, 19].

References
1 A. Abouzied, D. Angluin, Ch. Papadimitriou, J. M. Hellerstein, and A. Silberschatz. Learn-

ing and verifying quantified boolean queries by example. In Proceedings of the 32Nd Sym-
posium on Principles of Database Systems, PODS ’13, pages 49–60. ACM, 2013.

2 S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, and D. Srivastava. Tree pattern query
minimization. VLDB Journal, 11(4):315–331, 2002.

3 M. Anthony, G. Brightwell, D. Cohen, and J. Shawe-Taylor. On exact specification by
examples. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory,
COLT ’92, pages 311–318, New York, NY, USA, 1992. ACM.

4 S. Cho, S. Amer-Yahia, L. V. S. Lakshmanan, and D. Srivastava. Optimizing the secure
evaluation of twig queries. In International Conference on Very Large Data Bases (VLDB),
pages 490–501, 2002.

5 S. Cohen and Y. Y. Weiss. Certain and possible XPath answers. In International Conference
on Database Theory (ICDT), 2013.

6 C. de la Higuera. Characteristic sets for polynomial grammatical inference. Machine
Learning, 27(2):125–138, 1997.

7 E. M. Gold. Language identification in the limit. Information and Control, 10(5):447–474,
1967.

8 E. M. Gold. Complexity of automaton identification from given data. Information and
Control, 37(3):302 – 320, 1978.

9 S. A. Goldman and M. J. Kearns. On the complexity of teaching. Journal of Computer
and System Sciences, 50(1):20 – 31, 1995.

10 S. A. Goldman, R. L. Rivest, and R. E. Schapire. Learning binary relations and total
orders. SIAM J. Comput., 22(5):1006–1034, 1993.

11 B. Kimelfeld and Y. Sagiv. Revisiting redundancy and minimization in an xpath fragment.
In EDBT 2008, 11th International Conference on Extending Database Technology, pages
61–72, 2008.

12 J. Michaliszyn, A. Muscholl, S. Staworko, P. Wieczorek, and Z. Wu. On injective embed-
dings of tree patterns. CoRR, abs/1204.4948, 2012.

13 G. Miklau and D. Suciu. Containment and equivalence for a fragment of XPath. Journal
of the ACM, 51(1):2–45, 2004.

14 F. Neven. Automata, logic, and XML. In Workshop on Computer Science Logic (CSL),
volume 2471 of Lecture Notes in Computer Science, pages 2–26. Springer, 2002.

15 F. Neven and T. Schwentick. XPath containment in the presence of disjunction, DTDs,
and variables. In International Conference on Database Theory (ICDT), pages 315–329.
Springer-Verlag, 2003.

16 S. Salzberg, A. L. Delcher, D. G. Heath, and S. Kasif. Learning with a helpful teacher.
In Proceedings of the 12th International Joint Conference on Artificial Intelligence., pages
705–711, 1991.

17 T. Schwentick. XPath query containment. SIGMOD Record, 33(1):101–109, 2004.
18 A. Shinohara and S. Miyano. Teachability in computational learning. New Generation

Comput., 8(4):337–347, 1991.
19 S. Staworko and P. Wieczorek. Learning twig and path queries. In International Conference

on Database Theory (ICDT), March 2012.
20 B. Ten Cate, V. Dalmau, and P. Kolaitis. Learning schema mappings. In International

Conference on Database Theory (ICDT), March 2012.


	Introduction
	Basic notions
	Characterizing queries with examples
	Non-characterizability of unions of twig queries

	Characterizability of Twig queries
	Anchored twig queries
	Generalization operations
	Injective embeddings
	Generalizations of anchored twig queries
	Characterizability of AnchTwig under injective semantics

	Characterizability of Anchored Twig queries
	Reducing anchored twig queries
	Duplication operation

	Conclusions and future work

