Mu-Calculus Based Resolution of XPath Decision Problems

Abstract

XPath is the standard declarative notation for navigating XML data and returning a set of matching nodes. In the context of XSLT/XQuery analysis, query optimization, and XML type checking, XPath decision problems arise naturally. They notably include XPath containment (whether or not for any tree the result of a particular query is included in the result of a second one), and XPath satisfiability (whether or not an expression yields a non-empty result), in the presence (or the absence) of XML DTDs. In this paper, we propose a unifying logic for XML, namely the alternation-free modal mu-calculus with converse. We show how to translate major XML concepts such as XPath and DTDs into this logic. Based on these embeddings, we show how XPath decision problems can be solved using a state-of-the-art EXPTIME decision procedure for mu-calculus satisfiability. We provide preliminary experiments which shed light, for the first time, on the cost of solving XPath decision problems in practice

    Similar works