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Abstract

We show that problems arising in static analysis of XML specifications and transformations can be
dealt with using techniques similar to those developed for static analysis of programs. Many properties
of interest in the XML context are related to navigation, and can be formulated in temporal logics
for trees. We choose a logic that admits a simple single-exponential translation into unranked tree
automata, in the spirit of the classical LTL-to-Büchi automata translation. Automata arising from
this translation have a number of additional properties; in particular, they are convenient for reasoning
about unary node-selecting queries, which are important in the XML context. We give two applications
of such reasoning: one deals with a classical XML problem of reasoning about navigation in the presence
of schemas, and the other relates to verifying security properties of XML views.
Keywords Query automata, static analysis, temporal logics, XML

1 Introduction

Static analysis of XML specifications and transformations has been the focus of many recent papers. Typ-
ical problems include consistency of type declarations and constraints [1, 5, 25], or of schema specifications
and navigational properties [7, 18] or containment of XPath expressions [9, 11, 17, 27, 37]. They found
application in query optimization, access control, data exchange, and reasoning about security properties
of views, among others.

There is an analogy, at least at the level to tools and techniques, between many of XML static analysis
problems and those arising in software verification. Specifications of program behavior are often expressed
in temporal logic formalisms, while the programs themselves are abstracted as labeled transitions systems
or Kripke structures, and thus can be viewed as automata. To reason about programs, logical specifications
are turned into automata, and then verification problems are reduced to pure automata questions such as
‘is there an accepting run of a given automaton?’.

When we turn to XML, we see both the ingredients. First, many XML specifications – for example,
various schema formalisms – are automata-based. For example, DTDs are extended context free grammars,
and extended DTDs (which add a notion of specialization to DTDs) have precisely the power of tree
automata. Many other formalisms have automata-theoretic flavor, see [26] for a survey. Furthermore,
there is a close connection between XML navigation (e.g., the language XPath), which is a key component
of query languages, and temporal logics [6, 28, 27, 23, 17, 18]. Thus, it is very natural to adapt automata-
based techniques developed by the verification community (cf. [12]) to XML static analysis problems
involving schemas and navigation.

This idea has been explored in the past, mainly by adapting existing verification tools, and reshaping
the problem at hand so that those tools would be applicable to it. For example, [27] shows how to reason
about XPath and XML schemas by encoding them in PDL (propositional dynamic logic). The problem is,
given an input DTD d and Xpath expressions e1 and e2, to check whether containment e1(T ) ⊆ e2(T ) holds
for all trees T conforming to d. While the approach of [27] achieves a provably optimal EXPTIME bound,
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it does so by a rather complicated algorithm. For example, it uses, as a black box for one of its steps,
a translation from PDL into a certain type of tree automata [43], for which no efficient implementations
exist. Another example of such reasoning [17, 18], for the same containment problem, goes via a better
implementable µ-calculus, and achieves a similar 2O(n) bound.

We propose an alternative approach: instead of using verification techniques as-is in the XML con-
text, we adapt them to get better static analysis algorithms. The present paper can be viewed as a
proof-of-concept paper: we demonstrate one logic-to-automata translation targeted to XML applications,
which closely resembles the standard Vardi-Wolper’s translation [42] of LTL (linear temporal logic) into
nondeterministic Büchi automata, and show that it is easily applicable in some typical XML reasoning
tasks.

Typically, temporal logic formulae are translated into either nondeterministic or alternating automata;
for LTL, both are possible [42, 40]. We believe that both should be explored in the XML context. For
this paper, we concentrate on the former. A recent paper [11] developed an alternating-automata based
approach along the lines of [40]. It handled a more expressive navigation language, but did not work out
connections with XML schemas, as we do here.

Our goal is to find a clean direct translation from a logical formalism suitable for expressing many
XML reasoning tasks, into an automata model. Towards that end, we use a simple LTL-like logic for trees,
which we call TLtree, rather than a W3C-designed language (but we shall show that such languages can be
easily translated into TLtree). This logic was defined in [36], and it was recently used in the work on XPath
extensions [28], and as a key ingredient for an expressively-complete logic for reasoning about procedural
programs [3, 4]. It should be noted that we do not propose to use TLtree for writing specifications; rather,
we view it as a convenient intermediate step as constantly changing standards and languages such as
XPath. Those languages can be easily encoded in TLtree, and the translation from TLtree into automata
follows the lines of well established translations from temporal logics into automata.

The translation that we exhibit produces a bit more than automata rejecting or accepting trees; instead
it will produce query automata [32, 30, 16] which can also select nodes from trees in their successful runs.
The ability to produce such automata is not surprising at all (since in the Vardi-Wolper construction states
are sets of formulae and successful runs tell us which formulae hold in which positions). Nonetheless, it
is a useful feature for XML reasoning, since many XML data processing tasks are about node-selecting
queries [20, 32, 38, 31]. Furthermore, additional properties of query automata arising in the translation
make operations such as complementation and testing containment very easy.

Main contributions We present a single-exponential translation from the logic TLtree into unranked
tree automata (in fact, into query automata with additional properties). We then show how to translate
various flavors of XPath into TLtree (most of the time, linearly, but even in more complex cases still guar-
anteeing the overall single-exponential bound on the translation XPath → TLtree → automata). Further-
more we give two applications of the translations to XML reasoning, involving satisfiability/containment
of XPath in the presence of schema information, and reasoning about XML views.

Organization In Section 2 we give examples of XML reasoning where the logic/automata connection
would be useful. Section 3 describes unranked trees and automata for unranked trees. In Section 4 we
present the logic TLtree and various XPath formalisms, and in Section 5 we give an easy translation of
XPath into TLtree. In Section 6 we give a translation from TLtree to query automata. Section 7 applies
this translation in complex reasoning tasks involving schemas and navigation in XML documents and to
reasoning about XML views.

An extended abstract of this work has appeared in LPAR 2008 conference proceedings [24].
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2 Motivating examples

We now consider two examples of XML static analysis problems that will later be handled by restating
these problems with the help of TLtree and the automata translation. While formal definitions will be
given later, for the reader not fluent in XML the following abstractions will be sufficient. First, XML
documents themselves are labeled unranked trees (that is, different nodes can have a different number of
children). XML schemas describe how documents are structured; we abstract them for now by means of
tree automata. The most common of such formalisms is referred to as DTDs (document type definitions).
And finally XPath is a navigational language; an XPath expression for now can be thought of as selecting
a set of nodes in a tree.

Reasoning about schemas and navigation

A common static analysis problem in the XML context, arising in query optimization and consistency
checking, is the interaction of navigational properties (expressed, for example, in XPath) with schemas
(often given as DTDs). Examples of such problems are XPath containment [37] or XPath/DTD consistency
[7].

The containment problem of XPath expressions under a DTD, is the problem of checking whether for
all trees satisfying a DTD d, the set of nodes selected by an expression e1 is contained in the set selected
by e2 (written as d |= e1 ⊆ e2). The XPath/DTD consistency problem is to check whether there exists a
tree satisfying a given DTD where the set of nodes selected by a given Xpath expression is non-empty.

Known results about the complexity of such problems are typically stated in terms of completeness
for various intractable complexity classes. They imply unavoidability of exponential-time algorithms, and
they do not necessarily lead to reasonable algorithms that can be used in practice.

To illustrate this, consider the containment problem of XPath expressions under a DTD. For example,
consider two expressions e1 = r//b and e2 = r/a/b (we assume that r refers to the root of a tree). The
first expression selects all nodes (descendants of the root, which is expressed by r//) labeled b. The second
expression selects b-labeled grandchildren of the root whose parent is labeled a. In general we have e2 ⊆ e1
but e1 ⊆ e2 does not hold. However, if we have a DTD d with the rules r → a∗; a → b∗; b → ε saying
that all children of r must be labeled a and all children of a-labeled nodes must be labeled b, then we have
the reverse inclusion as well, i.e., d |= e1 ⊆ e2.

To verify containment, one could use automata-based algorithms that translate XPath directly into
automata (which could depend heavily on a particular syntactic class [33]). Alternatively, one could
attempt a translation via an existing logic. This is the approach of [27, 17] which translate e1, e2, and d
into formulae of expressive logics such as PDL (in [27]) or µ-calculus (in [17, 18]). Then one uses techniques
of [43, 41] to check if there exists a finite tree T satisfying d and a node s in T witnessing e1(s) ∧ ¬e2(s),
i.e., a counterexample to the containment.

While this is very much in the spirit of the traditional logic/automata connection used so extensively
in static analysis of programs, there are some problems with this approach as currently used. The logics
used were chosen because of their ability to encode DTDs, but this makes the constructions apply several
algorithms as black-boxes. For example, the PDL approach of [27] combines three different constructions:
one is a translation into PDL with converse on binary trees; another one is an algorithm of [43] translating
PDL into a rather complex automata model; and a third one is a product construction with an extra au-
tomaton that restricts the produced automaton to finite trees. Another limitation of the above approaches
to verify containment is that we do not get a concise description of the set of all possible counterexamples,
rather a yes or no answer. Finally, the high expressiveness of logics comes at a cost. The running time
of algorithms that go via µ-calculus or PDL is 2O(‖e1‖+‖e2‖+‖d‖), where ‖ · ‖ denotes the size [27, 18]. In
several applications, we would rather avoid the 2O(‖d‖) factor, since many DTDs are computer-generated
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from database schemas and could be very large, while XPath expressions tend to be small.
The translation we propose is a direct and simple construction (following the lines of Vardi-Wolper’s

translation), and does not rely on complicated algorithms such as the PDL-to-automata translation (which
are unlikely to be implementable). It produces a concise description of all possible counterexamples.
Finally, it exhibits an exponential blowup in the size of e1 and e2, but remains polynomial in the size of
the schema.

To illustrate it, we revisit the example with the DTD d given by r → a∗; a → b∗; b → ε and
expressions e1 = r//b and e2 = r/a/b. We shall translate XPath expressions into temporal logic formulae:

ψe1 = b
ψe2 = b ∧X−

ch

(

a ∧X−
chr

)

The connective X−
ch means that a formula is true in the parent of a given node; that is, b∧X−

ch(a∧X−
chr)

is true in a node if it is labeled by b, its parent by a, and its grandparent by r.
We then define ϕ = ψe1 ∧¬ψe2 which describes counterexamples to containment. We modify it so that

all negations apply only to labels:
ϕ = b ∧X−

ch

(

¬a ∨X−
ch¬r

)

.

We then follow a standard approach by translating this formula into an automaton whose states are sets
of subformulae of ϕ, i.e., subsets of

¬a, ¬r, b, X−
ch¬r, ¬a ∨X−

ch¬r, X−
ch

(

¬a ∨X−
ch¬r

)

, ϕ.

The resulting automaton would accept some trees of course, because in general the containment e1 ⊆ e2
does not hold. But we then take the product of this automaton with the automaton that captures the
DTD. The resulting automaton accepts counterexamples to containment under the DTD. In our example,
this automaton would be empty.

Informally (and this will be made precise when we describe the translation), the product automaton is
of size exponential in e1 and e2 (as in [27, 18]) and linear in the size of d (unlike in [27, 18]). Since testing
for emptiness can be done in polynomial time, the construction removes an exponential factor 2O(‖d‖).

The example shown above outlines the main elements of the construction we present here. The temporal
formulae come from the logic TLtree. We present two main technical devices in this paper:

1. A single-exponential translation from TLtree formulae to automata; and

2. A single-exponential, but often linear, translation from XPath to TLtree.

While this might appear to lead to a double-exponential translation overall, we also show that the XPath-
to-TLtree is done in a way that does not increase the number of subformulae. And since the states of the
automaton are sets of subformulae, the overall translation is single-exponential.

Our approach can deal with more general problems than XPath containment under DTDs. General-
izations of this problem will be discussed in Section 7.1. In particular the ability to manipulate TLtree

formulae also gives us algorithms for complex containment/equivalence conditions; the ability to take
products lets us incorporate schema information in a way that avoids an exponential blowup in the size
of the schema.

Reasoning about views and query answers

Often the user sees not a whole XML document, but just a portion of it, V (called a view), generated by
a query. Such a query typically specifies a set of nodes selected from a source document, and thus can be
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represented by a query automaton QAV : i.e., an extension of a tree automaton that can select nodes in
trees; a formal definition will be given shortly.

If we only have access to V , we do not know the source document that produced it, as there could
be many trees T satisfying V = QAV(T ). We may know, however, that every such source has to satisfy
some schema requirements, presented by a tree automaton A. Moreover we may know that there is some
particular information about the source that is considered a “secret”, and therefore should not be available.

A common problem is to check whether V may reveal this “secret” information about the source. If
Q is a Boolean (yes/no) query, one defines the certain answer to Q over V to be true iff Q is true in every
possible T that generates V :

certain
A
QAV

(Q;V ) =
∧

{Q(T ) | V = QAV(T ), T is accepted by A}

Now if by looking at V , we can conclude that certain
A
QAV

(Q;V ) is true, then V reveals that Q is true
in an unknown source. If Q is a containment statement e1 ⊆ e2, such an inclusion could be information
that needs to be kept secret (e.g., it may relate two different groups of people). For more on this type of
applications, see [15, 14].

For example, assume that the source document (that is unknown to us) conforms to the DTD d with
the rules r → a∗, c∗; a → b∗, d∗; and c∗ → f∗, b∗ (plus b, d, f → ε). Suppose that the view simply selects
all the b-labeled nodes, and together with each node it selects the full path from the root to the node.

Next, assume that the ‘secret’ query Q is the containment r//b ⊆ r//a/b. It says that every b node
must be a child of an a node. If a and b talk about groups of people, products, etc., information of this
kind may be important to hide. If we simply look at the DTD and the query, we cannot derive this fact,
as some b’s appear on the r.c.b path. It appears that we need access to the document itself.

However, if we have access just to the view and not the source document, we may positively answer
the query in some cases. For instance, if in the view every b node is a child of an a node, then we can
derive, from the view and the schema information, that the same is true in the source, even if we do not
know it.

In general, assume that the Boolean query Q is definable by an automaton AQ. Our approach to
computing certain answers is as follows. We attempt to convert automata AQ, A, and the query automaton
QAV into a new automaton A∗ so that A∗ accepts V iff certain

A
QAV

(Q;V ) is false. Then acceptance by
A∗ gives us some assurances that the secret is not revealed. Furthermore, since views are often given by
XPath expressions, and e1 and e2 are often XPath expressions too, an efficient algorithm for constructing
A∗ would give us a verification algorithm exponential in (typically short) XPath expressions defining e1, e2,
and V, and polynomial in a (potentially large) expression defining the schema.

In fact, we shall present a polynomial-time construction for A∗ for the case of views which are similar
to the one we used in the example. Namely, such views are subtree- (or upward-closed): together with
each node they select the whole path from the root to that node. Such queries have arisen in a number of
applications in the XML context, see [2, 8]. For them, using the previous efficient translations from logical
formulae into query automata, we get efficient algorithms for verifying properties of views.

3 Unranked trees and automata

Unranked trees

XML documents are normally abstracted as labeled unranked trees (we disregard data values as well as
references such as ID and IDREF that lead to more general graph structures). We now recall the classical
definitions, see [31, 23, 38].

Nodes in unranked trees are elements of N
∗, i.e. strings of natural numbers. We write s · s′ for the

concatenation of strings, and ε for the empty string. The basic binary relations on N
∗ are:
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• the child relation: s ≺ch s
′ if s′ = s · i, for some i ∈ N, and

• the next-sibling relation: s′ ≺ns s
′′ if s′ = s · i and s′′ = s · (i+ 1) for some s ∈ N

∗ and i ∈ N.

The descendant relation ≺∗
ch and the younger sibling relation ≺∗

ns are the reflexive-transitive closures of
≺ch and ≺ns.

An unranked tree domain D is a finite prefix-closed subset of N
∗ such that s · i ∈ D implies s · j ∈ D

for all j < i. If Σ is a finite alphabet, a Σ-labeled unranked tree is a pair T = (D,λ), where D is a tree
domain and λ is a labeling function λ : D → Σ.

An unranked tree T = (D,λ) can be viewed as a structure 〈D,≺∗
ch,≺

∗
ns,(Pa)a∈Σ〉, where Pa’s are

labeling predicates: Pa = {s ∈ D | λ(s) = a}. Thus, when we talk about first-order logic (FO), or
monadic second-order logic (MSO), we interpret them on these representations of unranked trees. Recall
that MSO extends FO with quantification over sets.

In what follows we will often refer to unranked trees simply as trees.

Unranked tree automata and XML schemas

A nondeterministic unranked tree automaton (cf. [31, 38]) over Σ-labeled trees is a triple A = (Q,F, δ)
where Q is a finite set of states, F ⊆ Q is the set of final states, and δ is a mapping Q×Σ→ 2Q

∗

such that
each δ(q, a) is a regular language over Q. We assume that each δ(q, a) is given as an NFA (nondeterministic
finite automaton). A run of A on a tree T = (D,λ) is a function ρA : D → Q such that if s ∈ D is a
node with n children, and λ(s) = a, then the string ρA(s · 0) · · · ρA(s · (n − 1)) is in δ(ρA(s), a). Thus, if
s is a leaf labeled a, then ρA(s) = q implies that ε ∈ δ(q, a). A run is accepting if ρA(ε) ∈ F , and a tree
is accepted by A if an accepting run exists. Sets of trees accepted by automata A are called regular and
denoted by L(A).

There are multiple notions of schemas for XML documents. What is common for such notions is
that their structural aspects are subsumed by unranked tree automata, see [26] for several examples.
More, translations from various schema formalisms into automata are usually very effective [26], and thus
automata are naturally viewed as an abstraction of schemas in the XML literature. Among such schema
formalisms, DTDs (i.e., extended context-free grammars) are most commonly used. So when we speak of
XML schemas, we shall assume that they are given by unranked tree automata.

As an example, we show a simple translation from DTDs into unranked tree automata. Suppose we
have a DTD d over an alphabet Σ = {a0, a1, . . . , an} given by the set of rules ai → ei, where each ei
is a regular expression over Σ. We assume that a0 is the root. The states of the automaton Ad are
Q = {qa0 , . . . , qan

}, the final state is qa0, and the transition function is

δ(qai
, ai) = qei

for all i
δ(qai

, aj) = ∅ for all i 6= j

Here qei
is obtained from ei by replacing each al by qal

.
For instance, if we have a DTD d with the rules root → book+, book→ title, author∗ and title, author→

ε, then the automaton Ad would have states qroot, qbook, qauthor, qtitle, and the transitions

δ(qroot, root) = q+
book

δ(qbook, book) = qtitle, q
∗
author

δ(qtitle, title) = ε
δ(qauthor, author) = ε;

with all other values of δ being ∅.
In what follows, the size ‖d‖ of a DTD d refers to the size of the automaton Ad (under any standard

encoding of tree automata).
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Query automata

It is well known that automata capture the expressiveness of MSO (monadic second order logic) sentences
over finite and infinite strings and trees [39]. The model of query automata [32] captures the expressiveness
of MSO formulae ϕ(x) with one free first-order variable – that is, MSO-definable unary queries. We present
here a nondeterministic version, as in [30, 16].

A query automaton (QA) for Σ-labeled unranked trees is a tuple QA = (Q,F,Qs, δ), where (Q,F, δ)
is a nondeterministic unranked tree automaton, and Qs ⊆ Q is the set of selecting states. The runs of QA
on a tree T are defined as the runs of (Q,F, δ) on T . Each run ρ of QA on a tree T = (D,λ) defines the
set Sρ(T ) = {s ∈ D | ρ(s) ∈ Qs} of nodes assigned a selecting state. The unary query defined by QA is
then, under the existential semantics,

QA∃(T ) =
⋃

{Sρ(T ) | ρ is an accepting run of QA on T}.

Alternatively, one can define QA∀(T ) under the universal semantics as
⋂

{Sρ(T ) | ρ is an accepting run of QA on T}. Both semantics capture the class of unary MSO
queries [30].

For example, the automaton Ad for the DTD d from the previous section can be turned into a query
automaton QAd,book that selects book nodes from documents that conform to D simply by declaring qbook
as the selecting state.

These semantics QA∃(T ) and QA∀(T ) are not very convenient for reasoning tasks, as many runs need
to be taken into account – different nodes may be selected in different runs. Also, it makes operations on
query automata hard computationally: for example, a natural notion of complement for an existential-
semantics QA will be expressed as a universal semantics QA, requiring an exponential time algorithm to
convert it back into an existential QA.

To remedy this, we define a notion of single-run query automata as QAs (Q,F,Qs, δ) satisfying two
conditions:

1. For every tree T , and accepting runs ρ1 and ρ2, we have Sρ1(T ) = Sρ2(T ); and

2. The automaton (Q,F, δ) accepts every tree.

For such QAs, we can unambiguously define the set of selected nodes as QA(T ) = Sρ(T ), where ρ is an
arbitrarily chosen accepting run.

While the conditions are fairly strong, they do not restrict the power of QAs:

Fact 1 (see [16, 34, 35]) For every query automaton QA, there exists an equivalent single-run query
automaton, that is, a single-run query automaton QA′ such that QA∃(T ) = QA′(T ) for every tree T .

The construction in [16] needs a slight modification to produce such QA; also it needs to be extended
to unranked trees which is straightforward. This was also noticed in [35]. One can also get this result by
slightly adapting the construction of [34].

For example, to make the query automaton QAd,book (that selects book nodes from documents conform-
ing to d) single-run, we use the following trick: in the beginning the QA guesses whether the tree conforms
to DTD or not. If it does, it attempts to run QAd,book, with qbook as the selecting state (in a way that it
will not accept if the tree does not conform to d). If the guess is that the tree does not conform to d, it
runs an automaton accepting the complement of d with no selecting states. This will satisfy the definition
of single-run.

We now make a few remarks about closure properties and decision problems for single-run QAs. It is
known [31] that nonemptiness problem for existential-semantics QAs is solvable in polynomial time; hence
the same is true for single-run QAs. Single-run QAs are easily closed under intersection: the usual product
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construction works. Moreover, if one takes a product A × QA of a tree automaton and a single-run QA
(where selecting states are pairs containing a selecting state of QA), the result is a QA satisfying 1) above,
and the nonemptiness problem for it is solvable in polynomial time too.

We define the complement of a single-run QA as QA = (Q,F,Q−Qs, δ), where QA = (Q,F,Qs, δ). It
follows immediately from the definition that for every tree T with domain D, we have QA(T ) = D−QA(T ),
if QA is single-run. This implies that the containment problem QA1 ⊆ QA2 (i.e., checking whether
QA1(T ) ⊆ QA2(T ) for all T ) for single-run QAs is solvable in polynomial time, since it is equivalent to
checking emptiness of QA1 ×QA2.

4 Logics on trees: TLtree and XPath

TLtree

We shall use a tree temporal logic [28, 36], denoted here by TLtree [23]. It can be viewed as a natural
extension of LTL with the past operators to unranked trees [21, 41], with next, previous, until, and since
operators for both child and next-sibling relations. The syntax of TLtree is defined by:

ϕ,ϕ′ := ⊤ | ⊥ | a | ϕ ∨ ϕ′ | ¬ϕ | X∗ϕ | X−
∗ ϕ | ϕU∗ϕ

′ | ϕS∗ϕ
′,

where ⊤ and ⊥ are true and false, a ranges over Σ, and ∗ is either ’ch’ (child) or ’ns’ (next sibling). The
semantics is defined with respect to a tree T = (D,λ) and a node s ∈ D:

• (T, s) |= ⊤; (T, s) 6|= ⊥;

• (T, s) |= a iff λ(s) = a;

• (T, s) |= ϕ ∨ ϕ′ iff (T, s) |= ϕ or (T, s) |= ϕ′;

• (T, s) |= ¬ϕ iff (T, s) 6|= ϕ;

• (T, s) |= Xchϕ if there exists a node s′ ∈ D such that s ≺ch s
′ and (T, s′) |= ϕ;

• (T, s) |= X−
chϕ if there exists a node s′ ∈ D such that s′ ≺ch s and (T, s′) |= ϕ;

• (T, s) |= ϕUchϕ
′ if there is a node s′ such that s ≺∗

ch s
′, (T, s′) |= ϕ′, and for all s′′ 6= s′ satisfying

s ≺∗
ch s

′′ ≺∗
ch s

′ we have (T, s′′) |= ϕ.

• (T, s) |= ϕSchϕ
′ if there is a node s′ such that s′ ≺∗

ch s, (T, s′) |= ϕ′, and for all s′′ 6= s′ satisfying
s′ ≺∗

ch s
′′ ≺∗

ch s we have (T, s′′) |= ϕ.

The semantics of Xns,X
−
ns,Uns, and Sns is analogous by replacing the child relation with the next-sibling

relation.
We shall also use the standard abbreviations: Fchϕ is ⊤Uchϕ (there is a descendant where ϕ is true),

F−
chϕ is ⊤Schϕ (there is an ancestor where ϕ) is true; and likewise for Fns and F−

ns. We also use root as a
shorthand for ¬X−

ch⊤.
A TLtree formula ϕ defines a unary query T 7→ {s | (T, s) |= ϕ}. It is known that TLtree is expressively

complete for FO: the class of such unary queries is precisely the class of queries defined by FO formulae
with one free variable [28, 36].

XPath

We present a first-order complete extension of XPath, called conditional XPath, or CXPath [28]. We
introduce very minor modifications to the syntax (e.g., we use an existential quantifier E instead of the
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usual XPath node test brackets [ ]) to make the syntax resemble that of temporal logics. CXPath has
node formulae α and path formulae β given by:

α,α′ := a | ¬α | α ∨ α′ | Eβ
β, β′ := ?α | step | step∗ | (step/?α)∗ | β/β′ | β ∨ β′

where a ranges over Σ and step is one of the following: ≺ch, ≺−
ch, ≺ns, or ≺−

ns. The language without the
(step/?α)∗ is known as “core XPath”.

Intuitively Eβ states the existence of a path starting in a given node and satisfying β, the path formula
?α tests if the node formula α is true in the initial node of a path, and / is the composition of paths.

Given a tree T = (D,λ), the semantics of a node formula is a set of nodes [[α]]T ⊆ D, and the semantics
of a path formula is a binary relation [[β]]T ⊆ D ×D given by the following rules. We use R∗ to denote
the reflexive-transitive closure of relation R, and π1(R) to denote its first projection.

[[a]]T = {s ∈ D | λ(s) = a} [[?α]]T = {(s, s) | s ∈ [[α]]T }
[[¬α]]T = D − [[α]]T [[step]]T = {(s, s′) | s, s′ ∈ D and (s, s′) ∈ step}
[[α ∨ α′]]T = [[α]]T ∪ [[α′]]T [[β ∨ β′]]T = [[β]]T ∪ [[β′]]T
[[Eβ]]T = π1([[β]]T ) [[step∗]]T = [[step]]∗T

[[β/β′]]T = [[β]]T ◦ [[β′]]T
[[(step/?α)∗]]T = [[(step/?α)]]∗T

CXPath defines two kinds of unary queries: those given by node formulae, and those given by path
formulae β, selecting [[β]]rootT = {s ∈ D | (ε, s) ∈ [[β]]T }. Both classes capture precisely unary FO queries
on trees [28].

5 XPath and TLtree

XPath expressions can be translated into TLtree. For example, consider an expression in the “traditional”
XPath syntax: e = /a//b[//c]. It says: start at the root, find children labeled a, their descendants labeled
b, and select those which have a c-descendant. It can be viewed as both a path formula and a node formula
of XPath. An equivalent path formula is

β = ≺ch /?a/ ≺
∗
ch /?(b ∧E(≺∗

ch /?c)).

The set [[β]]rootT = {s | (ε, s) ∈ [[β]]T } is precisely the set of nodes selected by e in T . Alternatively we can
view it as a node formula

α = b ∧E(≺∗
ch /?c) ∧E

(

(≺−
ch)

∗/?(a ∧E(≺−
ch /root))

)

.

Here root is an abbreviation for a formula that tests for the root node. Then [[α]]T generates the set of
nodes selected by e. It is known [29] that for every path formula β, one can construct in linear time a
node formula α so that [[β]]rootT = [[α]]T . Thus, from now on we deal with node XPath formulae.

The above formulae can be translated into an equivalent TLtree expression

b ∧Fchc ∧ F−
ch

(

a ∧X−
chroot

)

This formula selects b-labeled nodes with c-labeled descendants, and an a-ancestor which is a child of the
root – this is of course equivalent to the original expression.

In what follows, the size ‖ψ‖ of a formula ψ (both a TLtree and a CXPath formula) refers to the number
of nodes in the parse tree of ψ.

9



Since both TLtree and CXPath are first-order expressively-complete [28], each core or conditional
XPath expression is equivalent to a formula of TLtree; however, no direct translation has previously been
produced. We now give such a direct translation that, for each CXPath formula α, produces an equivalent
TLtree formula ϕα. The crucial property of this translation is that, even if ϕα can be exponential in the
size of α, the size of its Fischer-Ladner closure (the set of all subformulae and their negations) is at most
linear in the size of the original formula α. This, together with the translation from TLtree to QAs, will
guarantee single-exponential bounds on QAs equivalent to XPath formulae. In the translation, CXPath
formulae of the form (step/?α)∗ will be referred to as conditional axes.

Theorem 1 Each node formula α of core or conditional XPath can be effectively translated into an equiv-
alent formula ϕα of TLtree such that the number of subformulae of ϕα is at most linear in the size of α.
Moreover, if α does not use disjunctions of path formulae nor child conditional axes, then the size of ϕα
is at most linear in the size of α.

Proof: Given two TLtree formulae ϕ and ϕ′ and a CXPath path formula β, we say that ϕ′ ≡ Xβϕ if for
each tree T and each node s of T , one has that (T, s) |= ϕ′ iff there exists a node s′ in T , with (s, s′) ∈ [[β]]T ,
such that (T, s′) |= ϕ.

Each CXPath node formula α is translated into a TLtree formula which we denote by ϕα; while each
CXPath path formula is translated into a mapping xβ from TLtree formulae to TLtree formulae. The
intended semantics of the translation is as follows:

1. If α is a node formula, then ϕα is an equivalent TLtree formula, that is for each tree T and each node
s in T , we have that (T, s) |= ϕα iff s ∈ [[α]]T .

2. If β is a path formula, then xβ is a mapping such that, for each TLtree formula ϕ, one has xβ(ϕ) ≡
Xβϕ.

The syntactic translation rules are the following:

α ϕα

a a

¬α′ ¬ϕα′

α′ ∨ α′′ ϕα′ ∨ ϕα′′

Eβ xβ(⊤)

β xβ(ϕ)

?α ϕα ∧ ϕ
≺ch Xchϕ

≺∗
ch ⊤Uchϕ

(≺ch /?α)∗ ϕ ∨Xch(ϕαUch(ϕ ∧ ϕα))

(≺−
ch /?α)∗ (X−

chϕα)Schϕ

(≺ns /?α)∗ (Xnsϕα)Unsϕ

(≺−
ns /?α)∗ (X−

nsϕα)Snsϕ

β′/β′′ xβ′ ◦ xβ′′(ϕ)

β′ ∨ β′′ xβ′(ϕ) ∨ xβ′′(ϕ)

In the cases β =≺−
ch, β =≺ns, β =≺−

ns, translation rules are obtained from the case β =≺ch by replacing
Xch with X−

ch, Xns and X−
ns, respectively. In the cases β =≺−∗

ch , β =≺∗
ns, β =≺−∗

ns , translation rules are
obtained from the case β =≺∗

ch by replacing Uch with Sch, Uns and Sns, respectively.
We now show by induction that ϕα and xβ have the intended semantics stated in 1. and 2. above.

In the base case that α = a, clearly ϕα is equivalent to α. Moreover in the base case that β =≺ch (resp.
β =≺∗

ch), by the translation rules, xβ(ϕ) = Xchϕ (resp. xβ(ϕ) = ⊤Uchϕ), therefore for each tree T and
each node s of T , we have that (T, s) |= xβ(ϕ) iff there exists s′ such that s ≺ch s

′ (resp. s ≺∗
ch s

′) and
(T, s′) |= ϕ. In other words, (T, s) |= xβ(ϕ) iff there exists s′ such that (s, s′) ∈ [[β]]T and (T, s′) |= ϕ. By
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definition of Xβ, it follows that xβ(ϕ) ≡ Xβϕ. The proofs for the other steps (≺−
ch, ≺ns, ≺

−
ns, and their

transitive closures) follow the same lines.
We now deal with the general cases, by using structural induction on the CXPath formula.
In the case that α is ¬α′ or α′ ∨ α′′ or Eβ, we assume that ϕα′ , ϕα′′ and xβ have the intended

semantics stated in 1. and 2. above. Then ϕα′ and ϕα′′ are equivalent to α′ and α′′ respectively; similarly
xβ(⊤) ≡ Xβ⊤. As a consequence, by definition of the semantics of TLtree and CXPath formulae, ¬ϕα′ is
equivalent to ¬α′ , and ϕα′ ∨ ϕα′′ is equivalent to α′ ∨ α′′. Also, by definition of Xβ, for each tree T and
each node s of T , one has that (T, s) |= xβ(⊤) iff there exists a node s′ in T , with (s, s′) ∈ [[β]]T . Then
xβ(⊤) is equivalent to Eβ.

In the case that β =?α, by the induction hypothesis, ϕα is equivalent to α. Then for each tree T and
each node s of T , one has that (T, s) |= xβ(ϕ) iff s ∈ [[α]]T (or equivalently (s, s) ∈ [[?α]]T ) and (T, s) |= ϕ.
It follows that xβ(ϕ) ≡ Xβϕ.

In the case that β = (≺ch /?α)∗, we have xβ(ϕ) = ϕ ∨ Xch(ϕαUch(ϕ ∧ ϕα)) and, by the induction
hypothesis, ϕα is equivalent to α. Now notice that (s, s′) ∈ [[β]]T iff

a) either s′ = s or

b) there exists s0 with s ≺ch s0 such that s0 ≺
∗
ch s′ and for all s′′ with s0 ≺

∗
ch s′′ ≺∗

ch s′, one has
s′′ ∈ [[α]]T (or equivalently (T, s′′) |= ϕα).

On the other hand, it follows from the definition of xβ(ϕ) that (T, s) |= xβ(ϕ) iff

i) either (T, s) |= ϕ or

ii) there exists s0 with s ≺ch s0 and s′ with s0 ≺
∗
ch s

′ such that (T, s′) |= ϕ and for all s′′ satisfying
s0 ≺

∗
ch s

′′ ≺∗
ch s

′, we have (T, s′′) |= ϕα.

By comparing i) and ii) with a) and b) above, one derives that (T, s) |= xβ(ϕ) iff there exists s′ with
(s, s′) ∈ [[β]]T such that (T, s′) |= ϕ; that is xβ(ϕ) ≡ Xβϕ.

In the case that β = (≺−
ch /?α)∗, we have xβ(ϕ) = (X−

chϕα)Schϕ and, by the induction hypothesis, ϕα
is equivalent to α. First notice that (s, s′) ∈ [[β]]T iff s′ ≺∗

ch s and for all s′′ 6= s′ with s′ ≺∗
ch s

′′ ≺∗
ch s, one

has (T, s′′) |= X−
chϕα. By definition of xβ and the semantics of Sch it follows that (T, s) |= xβ(ϕ) iff there

exists s′ with (s, s′) ∈ [[β]]T , satisfying (T, s′) |= ϕ; that is xβ(ϕ) ≡ Xβϕ.
The proofs for β = (≺ns /?α)∗ and β = (≺−

ns /?α)∗ follow the same lines as the case β = (≺−
ch /?α)∗.

In the case that β = β′/β′′, by the induction hypothesis, for each TLtree formula ψ, we have xβ′(ψ) ≡
Xβ′ψ and xβ′′(ψ) ≡ Xβ′′ψ. Therefore for each tree T and each node s of T , we have that (T, s) |= xβ(ϕ) iff
there exists a node s′ with (s, s′) ∈ [[β′]]T , such that (T, s′) |= xβ′′(ϕ). On the other hand (T, s′) |= xβ′′(ϕ)
iff there exists a node s′′ with (s′, s′′) ∈ [[β′′]]T such that (T, s′′) |= ϕ. In other words, (T, s) |= xβ(ϕ) iff
there exists a node s′′ with (s, s′′) ∈ [[β′/β′′]]T such that (T, s′′) |= ϕ. It follows that xβ(ϕ) ≡ Xβϕ.

In the case that β = β′∨β′′ – under the hypothesis that xβ′(ϕ) ≡ Xβ′ϕ and xβ′′(ϕ) ≡ Xβ′′ϕ – for a tree
T and a node s of T , we have that (T, s) |= xβ(ϕ) iff (T, s) |= xβ′(ϕ) or (T, s) |= xβ′′(ϕ). This implies that
(T, s) |= xβ(ϕ) iff there exists a node s′ with (s, s′) ∈ [[β′]]T or (s, s′) ∈ [[β′′]]T (that is (s, s′) ∈ [[β′]]T ∪[[β′′]]T ),
such that (T, s′) |= ϕ. Given that [[β′ ∨ β′′]]T = [[β′]]T ∪ [[β′′]]T , we have that xβ(ϕ) ≡ Xβϕ.

We now analyze the size of the produced TLtree formulae w.r.t. the size of the corresponding CXPath
formulae. In what follows, for each TLtree formula ϕ, we let sf(ϕ) stand for the set of its subformulae.

Claim 1 1. For each CXPath node formula α,

|sf(ϕα)| ≤ 4‖α‖

Moreover if no subformula of α is a path formula of the form β′ ∨ β′′ or (≺ch /?α
′)∗, then ‖ϕα‖ ≤

2‖α‖.
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2. For each CXPath path formula β and TLtree formula ϕ,

sf(xβ(ϕ)) = sf(ϕ) ∪Cβ

for some set Cβ of subformulae, with |Cβ | ≤ 4‖β‖. Moreover if no subformula of β is a path formula
of the form β′ ∨ β′′ or (≺ch /?α

′)∗, for each TLtree formula ϕ, we have that ‖xβ(ϕ)‖ ≤ ‖ϕ‖ + 2‖β‖.

Proof: We prove the claim by induction on the structure of the formulae α and β. In the base case that
α = a, a ∈ Σ, we have |sf(ϕα)| = ‖ϕα‖ = 1 while ‖α‖ = 1, thus |sf(ϕα)| ≤ 4‖α‖ and ‖ϕα‖ ≤ 2‖α‖ hold.

In the case that β = step, we have ‖xβ(ϕ)‖ = 1 + ‖ϕ‖ and sf(xβ(ϕ)) = sf(ϕ) ∪ {Xchϕ} thus |Cβ | = 1.
On the other hand ‖β‖ = 1, therefore |Cβ| ≤ 4‖β‖ and ‖xβ(ϕ)‖ ≤ ‖ϕ‖+ 2‖β‖ hold.

In the case that β =≺∗
ch, we have ‖xβ(ϕ)‖ = ‖ϕ‖+2 and sf(xβ(ϕ)) = sf(ϕ)∪{⊤,⊤Uchϕ}, thus |Cβ | = 2.

On the other hand ‖β‖ = 1, therefore |Cβ| ≤ 4‖β‖ and ‖xβ(ϕ)‖ ≤ ‖ϕ‖+ 2‖β‖ hold.
In the general case:

• if α = ¬α′ (or α = α′ ∨ α′′), the subformulae of ϕα are sf(ϕα) = {¬ϕ′
α} ∪ sf(ϕα′) (or sf(ϕα) =

{ϕα′ ∨ ϕα′′} ∪ sf(ϕα′) ∪ sf(ϕα′′), resp.). By the induction hypothesis, |sf(ϕα′)| ≤ 4‖α′‖, therefore
|sf(ϕα)| ≤ 1 + 4‖α′‖ ≤ 4 + 4‖α′‖ = 4‖α‖ (respectively, |sf(ϕα)| ≤ 1 + 4‖α′‖+ 4‖α′′‖ ≤ 4‖α‖).

Moreover if α does not contain disjunction between path formulae, nor conditional child axes, so does
α′. Therefore, by the induction hypothesis on α′, we have that ‖ϕα‖ = 1+‖ϕ′

α‖ ≤ 1+2‖α′‖ ≤ 2‖α‖.

Similarly, in the case α = α′ ∨ α′′, the size ‖ϕα‖ = 1 + ‖ϕα′‖+ ‖ϕα′′‖ ≤ 1 + 2‖α′‖+ 2‖α′′‖ ≤ 2‖α‖.

• if α = Eβ, then sf(ϕα) = sf(xβ(⊤)). By the induction hypothesis |sf(xβ(⊤))| ≤ 1 + 4‖β‖ ≤ 4‖Eβ‖.
Thus |sf(ϕα)| ≤ 4‖α‖.

If α, and therefore β, has no subformulae of the form β′∨β′′ or of the form (≺ch /?α
′)∗, the induction

hypothesis applies to β, implying ‖ϕα‖ = ‖xβ(⊤)‖ ≤ 1 + 2‖β‖ ≤ 2‖α‖.

• if β =?α, then sf(xβ(ϕ)) = {ϕα ∧ ϕ} ∪ sf(ϕα) ∪ sf(ϕ) and, by the induction hypothesis, |{ϕα ∧ ϕ} ∪
sf(ϕα)| ≤ 1 + |sf(ϕα)| ≤ 1 + 4‖α‖ ≤ 4‖β‖.

Moreover, if β contains no disjunctions between path formulae nor conditional child axes, the induc-
tion hypothesis on α implies that ‖xβ(ϕ)‖ = 1 + ‖ϕα‖+ ‖ϕ‖ ≤ 1 + 2‖α‖ + ‖ϕ‖ ≤ 2‖β‖ + ‖ϕ‖.

• if β = (≺ch /?α)∗, then sf(xβ(ϕ)) = {ϕ∨Xch(ϕαUch(ϕ∧ϕα)), ϕ∧ϕα, ϕαUch(ϕ∧ϕα), Xch(ϕαUch(ϕ∧
ϕα)} ∪ sf(ϕα) ∪ sf(ϕ). By the induction hypothesis |sf(ϕα)| ≤ 4‖α‖ thus |{ϕ ∨Xch(ϕαUch(ϕ ∧
ϕα)), ϕ ∧ ϕα, ϕαUch(ϕ ∧ ϕα), Xch(ϕαUch(ϕ ∧ ϕα)} ∪ sf(ϕα)| ≤ 4 + 4‖α‖ = 4‖β‖.

• if β = (≺−
ch /?α)∗, then sf(xβ(ϕ)) = {(X−

chϕα)Schϕ,X
−
chϕα} ∪ sf(ϕα) ∪ sf(ϕ). By the induction

hypothesis |sf(ϕα)| ≤ 4‖α‖ thus |{(X−
chϕα)Schϕ,X

−
chϕα} ∪ sf(ϕα)| ≤ 2 + 4‖α‖ < 4‖β‖.

We proceed similarly when β is based on the other step formulae (≺ns and ≺−
ns).

• If β = β′/β′′, then sf(xβ(ϕ)) = sf(xβ′(xβ′′(ϕ))). By the induction hypothesis on β′, sf(xβ(ϕ)) =
sf(xβ′′(ϕ)) ∪ Cβ′ . Now we can apply the induction hypothesis on β′′ to derive sf(xβ(ϕ)) = sf(ϕ) ∪
Cβ′′ ∪Cβ′ , where |Cβ′′ ∪ Cβ′ | ≤ 4‖β′‖+ 4‖β′′‖ < 4‖β‖.

Moreover when β contains no disjunction between path formulae and no conditional child axes, so
do β′ and β′′. It follows from the induction hypothesis that ‖xβ(ϕ)‖ = ‖xβ′(xβ′′(ϕ))‖ ≤ ‖xβ′′(ϕ)‖+
2‖β′‖ ≤ ‖ϕ‖ + 2‖β′′‖+ 2‖β′‖ < ‖ϕ‖+ 2‖β‖.

• If β = β′ ∨ β′′, then sf(xβ(ϕ)) = {xβ′(ϕ) ∨ xβ′′(ϕ)} ∪ sf(xβ′(ϕ)) ∪ sf(xβ′′(ϕ)). By the induction
hypothesis, we have that sf(xβ′(ϕ)) ∪ sf(xβ′′(ϕ)) = sf(ϕ) ∪Cβ′ ∪Cβ′′ with |Cβ′ | ≤ 4‖β′‖ and |Cβ′′ | ≤
4‖β′′‖. Therefore sf(xβ(ϕ)) = sf(ϕ)∪Cβ where |Cβ | = |{xβ′(ϕ)∨xβ′′(ϕ)}∪Cβ′ ∪Cβ′′ | ≤ 1 + 4‖β′‖+
4‖β′′‖ < 4(1 + ‖β′‖+ ‖β′′‖) = 4‖β‖.
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This proves the claim by induction.

The proof of the theorem follows directly from item 1. of Claim 1.

Notice that Core Xpath formulae do not contain conditional axes at all, therefore we derive the following
corollary:

Corollary 1 Node formulae α of Core Xpath that do not use any disjunctions of path formulae can be
effectively translated into equivalent TLtree formulae of size at most linear in the size of α.

Observe also that translation rules for (≺ch /?α)∗ and β′∨β′′ are the ones determining a size exponential
blowup in the translation from CXPath to TLtree; in fact the TLtree translation of these formulae contains
duplicates of subformulae ϕ or ϕα. On the other hand, an alternative version of CXPath can be defined,
where conditional axes have the form β = (?α/step)∗. The translation rules for this form of conditional
axes are simpler: for step =≺ch we have xβ(ϕ) = ϕαUchϕ, and for the other steps (≺−

ch, ≺ns, ≺
−
ns),

the operator Uch is replaced by Sch, Uns and Sns, respectively. Therefore, for this alternative version of
CXPath, no translation rule other than the one for β′∨β′′ determines an exponential blowup in size. This
is stated in the following corollary:

Corollary 2 Node formulae α of CXPath with conditional axes of the form (?α/step)∗ that do not use
any disjunctions of path formulae can be effectively translated into equivalent TLtree formulae of size at
most linear in the size of α.

6 Tree logic into query automata: a translation

Our goal is to translate TLtree into single-run QAs. We do a direct translation into unranked QAs, as
opposed to coding of unranked trees into binary (which is a common technique). Such coding is problematic
for two reasons. First, simple navigation over unranked trees may look unnatural when coded into binary,
resulting in more complex formulae (child, for example, becomes ‘left successor followed by zero or more
right successors’). Second, coding into binary trees makes reasoning about views much harder. The
property of being “upward-closed” (i.e. of being a subtree view), which is essential for decidability of
certain answers, is not even preserved by the translation. Thus, we do a direct translation into unranked
QAs, and then apply it to XML specifications.

Since values of transitions δ(q, a) in unranked QAs are not sets of states but rather NFAs representing
regular languages over states, we measure the size of QA = (Q,F,Qs, δ) not as the number |Q| of states,
but rather as

‖QA‖ = |Q|+
∑

q∈Q,a∈Σ

‖δ(q, a)‖,

where, if δ(q, a) is an NFA with states S and transition relation σ, the size ‖δ(q, a)‖ = |S|+ |σ|.
We first sketch the automaton construction and then show formally that every TLtree formula can be

translated in exponential time into an equivalent query automaton. First, as is common with translations
into nondeterministic automata [42], we need to work with a version of TLtree in which all negations are
pushed to propositions. To deal with until and since operators, we shall introduce four operators R∗ and
I∗ for ∗ being ’ch’ or ’ns’ so that ¬(αU∗β) ↔ ¬αR∗¬β and ¬(αS∗β) ↔ ¬αI∗¬β; this part is completely
standard. However, trees do not have a linear structure and we cannot just push negation inside the X
operators: for example, ¬Xchϕ is not Xch¬ϕ. Since our semantics of the next operators is existential
(there is a successor node in which the formula is true), we need to add their universal analogs. For
example, X∀

chϕ is true in s if for every successor s′ of s in the domain of the tree, ϕ is true in s′. Then
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of course we have ¬Xchϕ↔ X∀
ch¬ϕ. We add four such operators (X∀

ch,X
∀
ns,X

−∀
ch ,X

−∀
ns ). Other axes have

a linear structure, so one could alternatively add tests for the root, first, and last child of a node to deal
with them. For example, ¬X−

chϕ ↔ X−
ch¬ϕ ∨ αroot, where αroot is a test for the root. But for symmetry

we prefer to deal with the four universal versions of the next/previous operators, since it is unavoidable
for Xch.

With these additions, we can push negations to propositions, so we assume negations only occur in
subformulae ¬a for a ∈ Σ. Given a formula ϕ in this version of TLtree, we will denote as QAϕ the query
automaton constructed for ϕ. The states of QAϕ will be maximally consistent subsets of the Fischer-
Ladner closure of ϕ (in particular, for each state q and a subformula ψ, exactly one of ψ and ¬ψ is in
q).

The transitions have to ensure that all “horizontal” temporal connectives behave properly, and that
“vertical” transitions are consistent. The alphabet of each automaton δ(q, a) is the set of states of QAϕ;
that is, letters of δ(q, a) are sets of formulae. Each δ(q, a) is a product of three automata. The first
guarantees that eventualities αUnsβ and αSnsβ are fulfilled in the oldest and youngest siblings. For that,
we impose conditions on the initial states δ(q, a)’s that they need to read a letter (which is a state of QAϕ)
that may not contain αSnsβ without containing β, and on their final state guaranteeing that in the last
letter we do not have a subformula αUnsβ without having β.

The second automaton enforces horizontal transitions, and it behaves very similarly to the standard
LTL-to-Büchi construction; it only deals with next-sibling connectives. For example, if Xnsα is the current
state of QA for a node s · i, then the state for s · (i+ 1) contains α, and that if αUnsβ is in the state for
s · i but β is not, then αUnsβ is propagated into the state for s · (i+ 1).

The third automaton enforces vertical transitions. We give a few sample rules. If q contains the
negation of αSchβ, then the automaton rejects after seeing a state which contains αSchβ but does not
contain β (since in this case αSchβ must propagate to the parent). If q contains αUchβ and does not
contain β, then the automaton only accepts if one of its input letters contains αUchβ. And if q contains
Xchα, then it only accepts if one of its input letters contains α. In addition, we have to enforce eventualities
αUchβ by disallowing these automata to accept ε if q contains αUchβ and does not contain β.

The final states of QAϕ at the root must enforce correctness of αSchβ formulae: with each such formula,
states from F must contain β as well. This completes the construction. When all automata δ(q, a) are
properly coded, the 2O(n) bound follows. We then show a standard lemma that in an accepting run, a
node is assigned a state that contains a subformula α iff α is true in that node. This guarantees that for
every tree, there is an accepting run. Since each state has either α or ¬α in it, it follows that the resulting
QA is single-run.

We now show this formally:

Theorem 2 Every TLtree formula ϕ of size n can be translated, in exponential time, into an equivalent
single-run query automaton QAϕ of size 2O(n), i.e. a query automaton such that QAϕ(T ) = {s | (T, s) |= ϕ}
for every tree T .

Proof: We extend TLtree with eight operators, R∗, I∗, X∀
∗ and X−∀

∗ , where ∗ is either ch or ns. The
semantics of the new operators is defined so that:

• ϕ R∗ ϕ
′ ↔ ¬(¬ϕ U∗ ¬ϕ

′),

• ϕ I∗ ϕ
′ ↔ ¬(¬ϕ S∗ ¬ϕ

′),

• X∀
∗ϕ↔ ¬X∗¬ϕ,

• X−∀
∗ ϕ↔ ¬X−

∗ ¬ϕ.
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With these operators, we can assume that negation only occurs in subformulae ¬a for a ∈ Σ. That is, we
work with an equivalent TLtree syntax

ϕ,ϕ′ := ⊤ | ⊥ | a | ¬a | ϕ ∨ ϕ′ | ϕ ∧ ϕ′

| X∗ϕ | X−
∗ ϕ | X∀

∗ϕ | X−∀
∗ ϕ | ϕU∗ϕ

′ | ϕS∗ϕ
′ | ϕR∗ϕ

′ | ϕI∗ϕ
′

A formula in TLtree as presented earlier can be rewritten, in linear time, into an equivalent formula in this
syntax by propagating ¬ all the way to the atoms.

Next, as for LTL-to-automata translation, we define valid labelings of trees with TLtree formulae and
their properties. We will then show how to construct a query automaton that enforces such a labeling for
a given formula, and prove that it is the desired query automaton.

Valid labelings. Recall that the Fischer-Ladner closure of a TLtree formula ϕ is defined as the set of all
subformulae of ϕ and their complements:

cl(ϕ) = {ψ|ψ is a subformula of ϕ} ∪ {¬ψ|ψ is a subformula of ϕ}

where the complement ¬ψ stands for the formula obtained by pushing negation through the operators of
ψ in the usual way. We identify ¬¬ψ with ψ.

Given an unranked Σ-labeled tree T = (D,λ) and a TLtree formula ϕ over Σ, a closure labeling of
T with ϕ is a mapping τ : D → 2cl(ϕ). A closure labeling τ of T is valid if each formula that labels a
node is satisfied in that node. That is, for each node s of T and for each formula ϕ ∈ τ(s), we have that
(T, s) |= ϕ. We next prove that a closure labeling τ that satisfies the following conditions on each node s,
is valid:

1. (a) ⊥ /∈ τ(s);

(b) if ϕ ∨ ϕ′ ∈ τ(s), then either ϕ ∈ τ(s) or ϕ′ ∈ τ(s);

(c) if ϕ ∧ ϕ′ ∈ τ(s), then both ϕ ∈ τ(s) and ϕ′ ∈ τ(s);

2. for each a ∈ Σ, if a ∈ τ(s) then λ(s) = a, and if ¬a ∈ τ(s) then λ(s) 6= a;

3. (a) if Xchϕ ∈ τ(s), then for some i, the node s · i is in D and ϕ ∈ τ(s · i);

(b) if X∀
chϕ ∈ τ(s), then for all i such that s · i is in D, we have ϕ ∈ τ(s · i);

(c) if X−
chϕ ∈ τ(s) then there exists s′ ∈ D such that s′ ≺ch s and ϕ ∈ τ(s′);

(d) if X−∀
ch ϕ ∈ τ(s) and there exists s′ ∈ D such that s′ ≺ch s, then ϕ ∈ τ(s′);

(e) if ϕUchϕ
′ ∈ τ(s), then:

- either ϕ′ ∈ τ(s) or
- ϕ ∈ τ(s) and, for some i, the node s · i is in D and ϕUchϕ

′ ∈ τ(s · i);

(f) If ϕSchϕ
′ ∈ τ(s), then:

- either ϕ′ ∈ τ(s) or
- ϕ ∈ τ(s) and s = s′ · i, for some s′ ∈ D and some i, and ϕSchϕ

′ ∈ τ(s′);

(g) if ϕRchϕ
′ ∈ τ(s) then:

- ϕ′ ∈ τ(s) and
- either ϕ ∈ τ(s) or ϕRchϕ

′ ∈ τ(s · i), for each i such that s · i ∈ D;

(h) If ϕIchϕ
′ ∈ τ(s), then:

- ϕ′ ∈ τ(s) and
- if s = s′ · i for some s′ ∈ D and some i, then either ϕ ∈ τ(s) or
ϕIchϕ

′ ∈ τ(s′);

15



4. (a) if Xnsϕ ∈ τ(s), then there exists s′ ∈ D with s ≺ns s
′ and ϕ ∈ τ(s′);

(b) if X∀
nsϕ ∈ τ(s) and there exists s′ ∈ D with s ≺ns s

′, then ϕ ∈ τ(s′);

(c) if X−
nsϕ ∈ τ(s), then there exists s′ ∈ D with s′ ≺ns s and ϕ ∈ τ(s′);

(d) if X−∀
ns ϕ ∈ τ(s), and there exists s′ ∈ D with s′ ≺ns s, then ϕ ∈ τ(s′);

(e) if ϕUnsϕ
′ ∈ τ(s), then:

- either ϕ′ ∈ τ(s) or
- ϕ ∈ τ(s) and there exists s′ ∈ D with s ≺ns s

′ and ϕUnsϕ
′ ∈ τ(s′);

(f) If ϕSnsϕ
′ ∈ τ(s), then:

- either ϕ′ ∈ τ(s) or
- ϕ ∈ τ(s) and there exists s′ ∈ D with s′ ≺ns s and ϕSnsϕ

′ ∈ τ(s′);

(g) if ϕRnsϕ
′ ∈ τ(s) then:

- ϕ′ ∈ τ(s) and
- if there exists s′ ∈ D with s ≺ns s

′, either ϕ ∈ τ(s) or ϕRnsϕ
′ ∈ τ(s′);

(h) If ϕInsϕ
′ ∈ τ(s), then:

- ϕ′ ∈ τ(s) and
- if there exists s′ ∈ D with s′ ≺ns s, either ϕ ∈ τ(s) or ϕInsϕ

′ ∈ τ(s′).

Lemma 1 Given a TLtree formula ϕ over Σ and an unranked Σ-labeled tree T = (D,λ), if τ : D → 2cl(ϕ)

is a closure labeling of T satisfying conditions 1-4, then τ is a valid labeling.

Proof: We prove the statement by induction on the structure of formulae occurring in the labeling τ .
The base case is that of atomic formulae: if ⊤ ∈ τ(s) for some s ∈ D, then clearly (T, s) |= ⊤. Moreover,
for each a ∈ Σ, if a ∈ τ(s) (resp., ¬a ∈ τ(s)), then by rule 2, (T, s) |= a (resp., (T, s) |= ¬a).

Now we consider non-atomic formulae, and we assume that for each of their subformulae ϕ, if ϕ ∈ τ(s),
then (T, s) |= ϕ.

If ϕ ∨ ϕ′ ∈ τ(s) (or ϕ ∧ ϕ′ ∈ τ(s))), then by rule 1b (resp., rule 1c), either ϕ ∈ τ(s) or ϕ′ ∈ τ(s)
(resp., both ϕ ∈ τ(s) and ϕ′ ∈ τ(s)). By the induction hypothesis, this implies that either (S, T ) |= ϕ or
(S, T ) |= ϕ′ (resp., (S, T ) |= ϕ and (S, T ) |= ϕ′) . Therefore (S, T ) |= ϕ ∨ ϕ′ (resp., (S, T ) |= ϕ ∧ ϕ′).

If Xchϕ ∈ τ(s) then, by rule 3a, ϕ ∈ τ(s · i), for some i. By the induction hypothesis, (T, s · i) |= ϕ and
then (T, s) |= Xchϕ. The same holds for Xnsϕ using rule 4a.

Similarly if X∀
chϕ ∈ τ(s) then, by rule 3b, ϕ ∈ τ(s · i), for all i such that s · i ∈ D. By the induction

hypothesis, (T, s · i) |= ϕ and then (T, s) |= X∀
chϕ. The same holds for X∀

nsϕ using rule 4b.
If X−

chϕ ∈ τ(s), then by rule 3c and by the induction hypothesis, s = s′ · i, for some i and some s′ ∈ D,
and (T, s′) |= ϕ, whence (T, s) |= X−

chϕ. The same reasoning can be applied to the formula X−
nsϕ, using

rule 4c.
If X−∀

ch ϕ ∈ τ(s), then by rule 3d and by the induction hypothesis, we know that if there exist s′ ∈ D

such that s′ ≺ch s, then (T, s′) |= ϕ, whence (T, s) |= X−∀
ch ϕ. The same reasoning can be applied to the

formula X−∀
ns ϕ, using rule 4d.

If ϕUchϕ
′ ∈ τ(s), by successive application of rule 3e, there exists s′ with s ≺∗

ch s
′ such that ϕ′ ∈ τ(s′)

and, for each s′′ with s ≺∗
ch s

′′ ≺∗
ch s

′ and s′′ 6= s′, we have that ϕ ∈ τ(s′′). This implies, by the induction
hypothesis, that (T, s) |= ϕUchϕ

′. We proceed similarly for the formula ϕSchϕ
′ (using rule 3f), for the

formula ϕUnsϕ
′ (using rule 4e) and for the formula ϕSnsϕ

′ (using rule 4f).
Now assume ϕRchϕ

′ ∈ τ(s). For each s′ with s ≺∗
ch s

′, if (T, s′) 2 ϕ′, by the induction hypothesis,
ϕ′ /∈ τ(s′). Then, by successive application of rule 3g, there exists s′′, with s ≺∗

ch s
′′ ≺∗

ch s
′ and s′′ 6= s′,

such that ϕ ∈ τ(s′′). Hence, by the induction hypothesis, (T, s′′) |= ϕ. Since this holds for all descendant
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of s where ϕ′ is not satisfied, we conclude that (T, s) |= ϕRchϕ
′. Similarly we can prove the satisfaction

of formulae of the form ϕRnsϕ
′ (by successive application of rule 4g), formulae of the form ϕIchϕ

′ (by
rule 3h), and formulae of the form ϕInsϕ

′ (by rule 4h).

A valid labeling τ of a tree T with a formula ϕ is maximal if, for each formula ψ ∈ cl(ϕ) and for each
node s of T , we have that ψ ∈ τ(s) if and only if (T, s) |= ψ.

Query automaton. For a given TLtree formula ϕ0 over alphabet Σ, we now construct a query automaton
QAϕ0

= (Q,F,Qs, δ) whose accepting runs on a Σ-labeled tree T compute a maximal closure labeling of
T with ϕ0. Intuitively the states of the automaton correspond to subsets of cl(ϕ0) and the accepting runs
enforce conditions 1-4 to guarantee validity. Maximality is guaranteed by restricting the states of the
automaton to maximally consistent subsets of cl(ϕ0).
In particular, the set of states Q ⊆ 2cl(ϕ0) consists of all the subsets q ⊆ cl(ϕ0) such that:

• for each ψ ∈ cl(ϕ0), either ψ ∈ q or ¬ψ ∈ q, but not both;

• ⊥ /∈ q;

• if ϕ ∨ ϕ′ ∈ q, then either ϕ ∈ q or ϕ′ ∈ q;

• if ϕ ∧ ϕ′ ∈ q, then both ϕ ∈ q and ϕ′ ∈ q.

The set of final states F consists of all q0 ∈ Q such that:

• q0 does not contain formulae of the form X−
chϕ; or Xnsϕ or X−

nsϕ

• if q0 contains a formula of the form ϕSchϕ
′ or ϕIchϕ

′ or ϕSnsϕ
′ or ϕInsϕ

′ or ϕUnsϕ
′ or ϕRnsϕ

′, then
q0 also contains ϕ′.

For each formula ϕ ∈ cl(ϕ0), we let Qϕ be the set of states q ∈ Q such that ϕ ∈ q. Then the selecting
states are Qs = Qϕ0

.
The transition function δ : Q× Σ→ 2Q

∗

is defined as follows. For each q ∈ Q and a ∈ Σ:

δ(q, a) =
⋂

ψ∈q

L(ψ, q, a) ∩ L−(q) ∩ Lns

where:

• L(ψ, q, a) is the contribution of the formula ψ ∈ q to δ(q, a), it enforces “future” vertical conditions
and is defined as follows, depending on ψ:

– if ψ = a′ with a′ ∈ Σ and a′ 6= a, or if ψ = ¬a, then L(ψ, q, a) = ∅

– if ψ = Xchϕ then L(ψ, q, a) = Q∗QϕQ
∗;

– if ψ = X∀
chϕ then L(ψ, q, a) = Q∗

ϕ;

– if ψ = ϕUchϕ
′ then L(ψ, q, a) =







Q∗ if ϕ′ ∈ q
∅ if ϕ′ /∈ q and ϕ /∈ q
Q∗QψQ

∗ if ϕ′ /∈ q and ϕ ∈ q

– if ψ = ϕRchϕ
′ then L(ψ, q, a) =







∅ if ϕ′ /∈ q
Q∗ if ϕ′ ∈ q and ϕ ∈ q
Q∗
ψ if ϕ′ ∈ q and ϕ /∈ q
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– For all other formulae, L(ψ, q, a) = Q∗.

• L−(q) enforces “past” vertical conditions and is defined as follows:

L−(q) = Q−(q)∗

where Q−(q) is the set of states q′ satisfying all of the following conditions with q:

– if q′ contains X−
chϕ or X−∀

ch ϕ, then ϕ ∈ q;

– if q′ contains ϕSchϕ
′, then either ϕ′ ∈ q′, or ϕ ∈ q′ and ϕSchϕ

′ ∈ q;

– if q′ contains ϕIchϕ
′, then ϕ′ ∈ q′ and either ϕ ∈ q′ or ϕIchϕ

′ ∈ q

• Lns enforces horizontal conditions. It is a language over alphabet Q which simply enforces consistency
of formula assignments. Since its alphabet symbols are already sets of formulae, this can be enforced
by a DFA Ans = (Qns, Q, q0, QF , δns), having:

– set of states Qns = {q0} ∪Q, where q0 is a distinguished initial state, not occurring in Q;

– set of final states QF containing precisely q0 and all states qf ∈ Q such that :

a) qf does not contain formulae of the form Xnsϕ;

b) if ϕUnsϕ
′ is in qf or ϕRnsϕ

′ is in qf , then also ϕ′ is in qf ;

– transition function δns : Qns ×Q→ Qns defined as follows. For all states q′ ∈ Qns and symbols
q̃ ∈ Q, we have that q′ = δns(q0, q̃) iff q′ = q̃ and both the following conditions hold:

a) q′ does not contain formulae of the form X−
nsϕ;

b) if ϕSnsϕ
′ ∈ q′ or ϕInsϕ

′ ∈ q′ then ϕ′ ∈ q′;

For all states q, q′ in Qns and symbols q̃ ∈ Q, with q 6= q0, we have that q′ = δns(q, q̃) iff q′ = q̃
and the following holds:

a) if Xnsϕ ∈ q or X∀
nsϕ ∈ q, then ϕ ∈ q′;

b) if X−
nsϕ ∈ q

′ or X−∀
ns ϕ ∈ q

′, then ϕ ∈ q;

c) if ϕUnsϕ
′ ∈ q, then either ϕ′ ∈ q or ϕ ∈ q and ϕUnsϕ

′ ∈ q′;

d) If ϕSnsϕ
′ ∈ q′, then either ϕ′ ∈ q′ or ϕ ∈ q′ and ϕSnsϕ

′ ∈ q;

e) if ϕRnsϕ
′ ∈ q then ϕ′ ∈ q and either ϕ ∈ q or ϕRnsϕ

′ ∈ q′;

f) If ϕInsϕ
′ ∈ q′, then ϕ′ ∈ q′ and either ϕ ∈ q′ or ϕInsϕ

′ ∈ q.

Lemma 2 ρ is an accepting run of QAϕ0
on a tree T iff ρ is a maximal valid labeling of T with ϕ0.

Proof: Assume ρ is a maximal valid labeling of T with ϕ0, then directly by maximality and by the
semantics of TLtree formulae, ρ satisfies conditions 1-4. Maximality also implies that for each s ∈ T the
set of formulae ρ(s) is a maximally consistent subset of cl(ϕ0). Together with conditions 1 for ρ, this
implies that for each node s ∈ T , the set ρ(s) is a state of QAϕ0

.
Now we prove that ρ is an accepting run, that is: 1) ρ(ε) ∈ F and 2) for each node s, with n ≥ 0

children, ρ(s · 0), . . . , ρ(s · (n− 1)) ∈ δ(ρ(s), λ(s)).
Conditions 3c, 3f, 3h, and 4, satisfied by ρ in s = ε, imply directly the properties defining F . Thus

ρ(ε) ∈ F . We next prove that for all nodes s, with n ≥ 0 children:

A) the sequence of states ρ(s · 0), . . . , ρ(s · (n− 1)) belongs to L(ψ, ρ(s), λ(s)), for all ψ ∈ ρ(s),
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B) ρ(s · 0), . . . , ρ(s · (n− 1)) ∈ L−(ρ(s)) and

C) ρ(s · 0), . . . , ρ(s · (n− 1)) ∈ Lns.

These will prove ρ(s · 0), . . . , ρ(s · (n− 1)) ∈ δ(ρ(s), λ(s)).

A) For each formula ψ of the form a′ or ¬a′ (with a′ ∈ Σ) in ρ(s), by condition 2, L(ψ, ρ(s), λ(s)) = Q∗.
Then ρ(s · 0), . . . , ρ(s · (n − 1)) ∈ L(ψ, ρ(s), λ(s)).

For each formula of the form Xchϕ in ρ(s), condition 3a for ρ implies that, for some i, the label
ρ(s · i) is in Qϕ. Hence ρ(s · 0), . . . , ρ(s · (n− 1)) belongs to Q∗QϕQ

∗ = L(Xchϕ, ρ(s), λ(s)).

For each formula of the form X∀
chϕ in ρ(s), condition 3b for ρ implies that, for all i such that s ·i ∈ D,

the label ρ(s · i) is in Qϕ. Hence ρ(s · 0), . . . , ρ(s · (n− 1)) belongs to Q∗
ϕ = L(X∀

chϕ, ρ(s), λ(s)).

For each formula of the form ϕUchϕ
′ in ρ(s), by condition 3e, there are two cases:

• if ϕ′ ∈ ρ(s), then L(ϕUchϕ
′, ρ(s), λ(s)) = Q∗, therefore it contains ρ(s · 0), . . . , ρ(s · (n− 1));

• otherwise ϕ ∈ ρ(s) and, for some i, ρ(s · i) ∈ QϕUchϕ
′ . Hence ρ(s · 0), . . . , ρ(s · (n− 1)) belongs

to Q∗QϕUchϕ
′Q∗. This language coincides with L(ϕUchϕ

′, ρ(s), λ(s)) (since ϕ′ /∈ ρ(s) and
ϕ ∈ ρ(s)).

For each formula of the form ϕRchϕ
′ ∈ ρ(s), condition 3g satisfied by ρ implies that

L(ϕRchϕ
′, ρ(s), λ(s)) is not empty. Moreover we have two cases:

• if ϕ ∈ ρ(s), then L(ϕRchϕ
′, ρ(s), λ(s)) = Q∗, therefore it contains ρ(s · 0), . . . , ρ(s · (n− 1));

• otherwise, for each i such that s · i ∈ D, the state ρ(s · i) is in QϕRchϕ′ . Hence ρ(s · 0), . . . , ρ(s ·
(n − 1)) ∈ Q∗

ϕRchϕ
′ . On the other hand Q∗

ϕRchϕ
′ coincides with L(ϕRchϕ

′, ρ(s), λ(s)), since in
this case, ϕ′ ∈ ρ(s) and ϕ /∈ ρ(s).

For all other formulae ψ in ρ(s), the language L(ψ, ρ(s), λ(s)) is Q∗, thus membership is trivial.

B) Conditions 3c, 3d, 3f and 3h satisfied by ρ on all nodes s · i, for i = 0, . . . , n− 1, directly imply that
ρ(s · i) belongs to Q−(ρ(s)), for all i. Therefore ρ(s · 0), . . . , ρ(s · (n− 1)) belongs to Q−(ρ(s))∗, that
is to L−(ρ(s)).

C) If s is a leaf, its sequence of children is ε and ε ∈ Lns (since in Ans the initial state is also final).

If s is not a leaf, condition 4 is satisfied in s ·i, for all i. This implies that Ans accepts ρ(s ·0), . . . , ρ(s ·
(n− 1)). Indeed, conditions 4c, 4f and 4h satisfied by ρ in the node s · 0 imply, by definition of Ans,
that δns(q0, ρ(s · 0)) = ρ(s · 0). Similarly δns(ρ(s · i), ρ(s · (i+ 1))) = ρ(s · (i+ 1)), for i = 0, . . . , n− 2
by conditions 4a, 4b, 4e and 4g on node s · i, and conditions 4c, 4d, 4f and 4h on node s · (i + 1).
Finally ρ(s · (n − 1)) is a final state for Ans, by conditions 4a, 4e and 4g on node s · (n − 1). This
shows that there exists an accepting run of Ans on ρ(s · 0), . . . , ρ(s · (n− 1)).

Properties A, B, C, proved above imply ρ(s · 0), . . . ρ(s · (n − 1)) ∈ δ(ρ(s), λ(s)), for all nodes s, and
prove that ρ is an accepting run. This completes the proof of one direction.

Conversely, assume that ρ is an accepting run of QAϕ0
on T . We first prove that ρ is closure labeling

satisfying conditions 1-4 (stated in the beginning of the proof), and thus, by Lemma 1, a valid labeling.
Maximality will follow from the fact that states are maximally consistent subsets of cl(ϕ0).

Conditions 1 are satisfied for each node s, by the definition of states of QAϕ0
.
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Condition 2 is satisfied since ρ is accepting and then, for each node s, the set δ(ρ(s), λ(s)) is non-
empty. Therefore, by definition of δ, for each a ∈ Σ, if a (or ¬a) is in ρ(s), the language L(a, q, λ(s))
(resp., L(¬a, q, λ(s))) must be non empty. This directly implies condition 2 for ρ.

We now prove that ρ satisfies condition 3. For each node s of T with n ≥ 0 children:

• if Xchϕ ∈ ρ(s), by definition of δ(ρ(s), λ(s)), and since ρ is accepting, the sequence ρ(s · 0), . . . , ρ(s ·
(n− 1)) belongs to the language L(Xchϕ, ρ(s), λ(s)) = Q∗QϕQ

∗. Hence ϕ ∈ ρ(s · i), for some i. This
proves condition 3a for ρ in s.

• Similarly, if X∀
chϕ ∈ ρ(s), by definition of δ(ρ(s), λ(s)), and since ρ is accepting, the sequence

ρ(s · 0), . . . , ρ(s · (n − 1)) belongs to the language L(X∀
chϕ, ρ(s), λ(s)) = Q∗

ϕ. Hence ϕ ∈ ρ(s · i), for
each i such that s · i ∈ D. This proves condition 3b for ρ in s.

• if ϕUchϕ
′ ∈ ρ(s), again by definition of δ, the sequence ρ(s·0), . . . , ρ(s·(n−1)) belongs to the language

L(ϕUchϕ
′, ρ(s)), which is then not empty. Therefore, by definition of L(ϕUchϕ

′, ρ(s), λ(s)), one of
the following holds:

– either ϕ′ ∈ ρ(s) or

– ϕ ∈ ρ(s) and ρ(s · 0), . . . , ρ(s · (n− 1)) ∈ Q∗QϕUchϕ
′Q∗. Hence ϕUchϕ

′ ∈ ρ(s · i), for some i.

This proves that ρ satisfies condition 3e in s.

• Similarly, if ϕRchϕ
′ ∈ ρ(s), then ρ(s·0), . . . , ρ(s·(n−1)) belongs to the language L(ϕRchϕ

′, ρ(s), λ(s)),
which is therefore not empty. This implies that:

– ϕ′ ∈ ρ(s) and

– either ϕ ∈ ρ(s) or ρ(s · 0), . . . , ρ(s · (n − 1)) ∈ Q∗
ϕRchϕ

′ . In this last case ϕRchϕ
′ ∈ ρ(s · i), for

all i.

Thus ρ satisfies condition 3g in s.

On the whole, this shows that conditions 3a, 3b, 3e and 3g hold for all nodes. Moreover, since ρ is an
accepting run, we also know that for each node s, the sequence of states ρ(s · 0), . . . , ρ(s · (n− 1)) belongs
to the language L−(ρ(s)). So for each i such that s · i ∈ D, the state ρ(s · i) is in Q−(ρ(s)). By definition
of Q−, this implies conditions 3c, 3d, 3f and 3h on s · i. On the other hand, conditions 3c, 3d, 3f and 3h
on the root ε are directly implied by the fact that ρ(ε) is a final state of QAϕ0

. This proves that ρ satisfies
all conditions 3 on all nodes of T .

We now prove that ρ satisfies conditions 4. Conditions 4 in the root are again implied by the fact that
ρ(ε) is a final state of QAϕ0

. For all non-root nodes, ρ satisfies 4, thanks to the constraints enforced by
the accepting runs of Ans. In particular, for each node of the form s · i, let s · 0, . . . , s · (n − 1) be the
sequence of children of s. We know that ρ(s · 0), . . . , ρ(s · (n− 1)) is accepted by Ans, therefore:

• δns(q0, ρ(s · 0)) = ρ(s · 0). By definition of δns, this implies that ρ satisfies conditions 4c, 4d, 4f and
4h on the node s · 0.

• δns(ρ(s · i), ρ(s · i+ 1)) = ρ(s · i+ 1), for all i = 0, . . . , n − 2. This implies, by definition of δns, that
condition 4a, 4b, 4e and 4g are satisfied on s · i, and conditions 4c, 4d, 4f and 4h are satisfied on
s · i+ 1.

• ρ(s · (n − 1)) is a final state of Ans. This directly implies that conditions 4a, 4b, 4e and 4g are
satisfied by ρ on the node s · (n− 1).
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As a consequence, on the whole, all conditions 4a-4h are satisfied in s · i for each i. Thus conditions 4 are
satisfied also on all non-root nodes.

We conclude that ρ satisfies all conditions 1-4 on all nodes. Therefore, by Lemma 1, ρ is a valid
labeling. Now observe that for each node s, the state ρ(s) is a maximally consistent subsets of cl(ϕ0).
Therefore, for each formula ψ ∈ cl(ϕ0), and for each node s, if ψ ∈ ρ(s), then (T, s) |= ψ; on the contrary,
if ψ /∈ ρ(s) then ¬ψ ∈ ρ(s), implying (T, s) |= ¬ψ. This proves maximality of ρ and concludes the proof
the lemma.

Based on Lemma 2, it is straightforward to prove that QAϕ0
is the desired automaton:

Lemma 3 QAϕ0
is a single-run query automaton and it computes ϕ0. That is QAϕ0

(T ) = {s ∈ T |
(T, s) |= ϕ0}, for each Σ-labeled tree T .

Proof: By Lemma 2, there exists exactly one accepting run ρ of QAϕ0
on each tree T , corresponding

to the maximal valid labeling of T with ϕ0. Thus the single run conditions trivially hold. Moreover, by
maximality of the labeling ρ, for each node s we have that ϕ0 ∈ ρ(s) (that is ρ(s) ∈ Qϕ0

) iff (T, s) |= ϕ0.
Since the selecting states of QAϕ0

are Qϕ0
, this implies that the accepting run ρ selects precisely the

nodes where ϕ0 holds. That is QAϕ0
(T ) = {s ∈ T | (T, s) |= ϕ0}.

Size of the query automaton and complexity of the construction. We now show that, if m is the size of
cl(ϕ0), then QAϕ0

has size bounded by 2O(m) and can be constructed from input ϕ0 in time 2O(m).
First notice that |cl(ϕ0)| is bounded by |ϕ0|, since the number of subformulae of ϕ0 is bounded by the

number of nodes in its parse tree. Since different nodes of a parse tree can represent the same subformula,
the number of distinct subformulae of ϕ0 can be much smaller than its size. In particular we also have
that |ϕ0| is bounded by 2O(m).

Clearly the set of states of QAϕ0
has cardinality |Q| ≤ 2m. They can be computed from the input

formula ϕ0 by first computing cl(ϕ0) and then checking, on each subset of the closure, the local conditions
defining the states of QAϕ0

.
The closure can be computed in time polynomial in |ϕ0| (therefore in time 2O(m)) by identifying distinct

subtrees in the parse trees of ϕ0 and ¬ϕ0. Moreover all subsets of the closure are computed in time 2O(m).
Now conditions have to be checked on each subset of the closure in order to identify states, selecting

states and final states. Checking all the required local conditions on a subset of the closure can be always
done in polynomial time in m. This implies that states, selecting states and final states can be computed
in time 2O(m). Similarly one can compute states Qϕ for all ϕ ∈ cl(ϕ0) as well as states Q−(q), for all
q ∈ Q, states Qns and QF , in time 2O(m).

We now analyze the size and construction of the transition function. For each q ∈ Q and a ∈ Σ, the
automaton δ(q, a) can be obtained as the product of:

• Ans recognizing Lns;

• a DFA recognizing L(ψ, q, a), for all ψ ∈ q;

• a DFA recognizing L−(q).

There exist DFAs with at most two states that recognize L−(q) and L(ψ, q, a) (for all ψ, a and q).
Computing an automaton for L−(q), as well as for L(ψ, q, a), for a given q and ψ ∈ q, requires at most
checking a local condition on the state q in time linear in |q| ≤ m, and then producing a transition
function from a constant number of states and alphabet Q. This can be clearly done in time 2O(m). The
construction of Ans, requires the computation of a transition function of size |Q|3. Each of its elements is
computed in time polynomial in m, therefore the time bound for computing Ans is still 2O(m).
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The product of all the automata for δ(q, a) has number of states bounded by 2|q| ×Qns (where Qns is
the number of states of Ans). It can be computed in time polynomial in the number of states of δ(q, a)
and in |Q|, that is still in time 2O(m). Therefore the overall computation of QAϕ0

can be done in time
2O(m).

The size ‖QAϕ0
‖ by definition is |Q| +

∑

q∈Q,a∈Σ ‖δ(q, a)‖. If Sq,a denotes the number of states of

δ(q, a), we have ‖δ(q, a)‖ ≤ |Sq,a|+ |Sq,a|
2×|Q|. Since |Sq,a| and |Q| are bounded by 2O(m), so are ‖δ(q, a)‖

and ‖QAϕ0
‖.

Because m is bounded by |ϕ0|, this concludes the proof of the theorem.

We now give an example of the automaton construction.
Example . Let ϕ = ⊤Ucha be a TLtree formula over alphabet Σ = {a, b}. We now construct a query
automaton QAϕ = (Q,F,Qs, δ) equivalent to ϕ over Σ-labeled trees. The Fischer-Ladner closure of ϕ is

cl(ϕ) = {⊤, a,⊤Ucha,⊥,¬a,⊥Rch¬a}

and the set of states Q are all the maximally consistent subsets of cl(ϕ) which do not contain ⊥ (because
no formula of cl(ϕ) contains boolean connectives), that is :

Q = {q1, q2, q3, q4} with
q1 = {⊤, a,⊤Ucha}
q2 = {⊤,¬a,⊤Ucha}
q3 = {⊤, a,⊥Rch¬a}
q4 = {⊤,¬a,⊥Rch¬a}

All states are final (F = Q) because no state contains formulae with past or horizontal temporal
connectives. The selecting states are the ones containing ϕ, that is Qs = {q1, q2}.

We now compute the transition function δ. Note that, since cl(ϕ) contains no formulae with horizontal
temporal connectives, the language Lns (enforcing horizontal conditions on states associated to siblings in
a run of QAϕ) is Q∗. Similarly, cl(ϕ) contains no formulae with past temporal connectives. Therefore the
language L−(qi) (enforcing past conditions on states associated to parent-child pairs in a run of QAϕ) is
also Q∗, for all qi. It follows that for each state qi ∈ Q and each symbol s ∈ Σ, the transition function
δ(qi, s) is a language obtained by intersecting the contribution (L(ψ, qi, s)) of each formula ψ ∈ qi. Then
δ is as follows:

• δ(q1, a) = Q∗

because no formula in q1 needs to enforce constraints on the states associated to the children of a
node (that is L(ψ, q1, a) = Q∗ for all ψ ∈ q1);

• δ(q2, b) = Q∗{q1, q2}Q
∗

because ⊤Ucha ∈ q2 but a /∈ q1; then δ enforces that the formula ⊤Ucha (contained only in q1 and
q2) is propagated to at least one child (that is L(⊤Ucha, q2, b) = Q∗{q1, q2}Q

∗ and the contribution
of all other formulae in q2 is Q∗);

• δ(q4, b) = {q3, q4}
∗

because ⊥Rch¬a ∈ q4 but ⊥ /∈ q4; therefore δ enforces that all children nodes are assigned a state
containing ⊥Rch¬a (that is L(⊥Rch¬a, q4, b) = {q3, q4}

∗, while the contribution of all other formulae
in q4 is Q∗);

• δ(q1, b) = ∅

because the formula a ∈ q1 cannot be satisfied in a node labeled b (that is L(a, q1, b) = ∅);

22



• δ(q2, a) = ∅

because the formula ¬a ∈ q2 cannot be satisfied in a node labeled a (that is L(¬a, q2, a) = ∅);

• δ(q3, a) = ∅

because q3 contains the formula ⊥Rch¬a but not ¬a (that is L(⊥Rch¬a, q3, a) = ∅);

• δ(q3, b) = ∅

because L(a, q3, b) = ∅;

• δ(q4, a) = ∅

because L(¬a, q4, a) = ∅;

Given δ, it is easy to verify that there is only one accepting run of QAϕ on a tree: this assigns state q1
to all nodes labeled a, state q2 to all nodes labeled b which have an a-labeled descendant, and state q4 to
all nodes labeled b having no a-labeled descendant. Thus nodes assigned either q1 or q2 (that is one of the
selecting states) are precisely nodes where ⊤Ucha is satisfied. This shows that QAϕ is equivalent to ϕ.

7 Applications

7.1 Reasoning about document navigation

As mentioned in Section 2, typical XML static analysis tasks include consistency of schema and naviga-
tional properties (e.g., is a given XPath expression consistent with a given DTD?), or query optimization
(e.g., is a given XPath expression e contained in a another expression e′ for all trees that conform to a
DTD d?). We now show two applications of our results for such analyses of XML specifications.

As a starter, let us see how XPath containment in the presence of DTDs can be checked. Suppose
we want to check whether d |= e1 ⊆ e2. Translate e1 and e2 into TLtree formulae e′1 and e′2, and con-
struct QAe′

1
∧¬e′

2
– a query automaton for the formula e′1 ∧ ¬e

′
2 which witnesses counterexamples to the

containment. Let Ad be an automaton recognizing trees that conform to d. Then Ad × QAe′
1
∧¬e′

2
finds

trees that conform to d and witness a counterexample to e1 ⊆ e2. Hence, d |= e1 ⊆ e2 iff the language
of Ad × QAe′

1
∧¬e′

2
is empty. The size of the product QA is ‖d‖ · 2O(‖e1‖+‖e2‖), i.e., this is precisely the

construction that was promised in Section 2. Moreover, the query automaton Ad × QAe′
1
∧¬e′

2
describes

exactly the counterexamples to containment: it selects nodes s from trees T that conform to d such that
s is selected by e1 but not by e2.

Since we know how to construct query automata for arbitrary TLtree formulae, this simple idea works
not only for containment of two expressions but for more complex satisfiability and containment conditions.
We give two examples below.

Satisfiability algorithms for sets of XPath expressions The exponential-time complexity for sat-
isfiability of XPath expressions in the presence of a schema is already known [27, 7]. We now show how
we can verify satisfiability of multiple sets of XPath expressions, in a uniform way, using translation into
query automata.

Given an arbitrary set E = {e1, . . . , en} of XPath (core or conditional) expressions and a subset E′ ⊆ E,
let Q(E′) be a unary query defining the intersection of queries given by all the e ∈ E′. That is, Q(E′)
selects nodes that satisfy every expression e ∈ E′. We can capture all (exponentially many) such queries
Q(E′)s by a single automaton, that is instantiated into different QAs by different selecting states.
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Proposition 1 One can construct, in time 2O(‖E‖) (that is, 2O(‖e1‖+...+‖en‖)), an unranked tree automaton
A(E) = (Q,F, δ) and a relation σ ⊆ E ×Q such that, for every E′ ⊆ E,

QAE′ = (Q, F,
⋂

{σ(e) | e ∈ E′}, δ)

is a single-run QA defining the unary query Q(E′).

Proof: The construction of QAE′ simply takes the product of all the QAe′
i
s, produced by Theorem 2,

where e′i is a TLtree translation of ei, produced by Theorem 1. The relation σ relates tuples of states that
include selecting states of QAe′

i
with ei ∈ E. Then checking nonemptiness of QAE′ , we see if all e ∈ E′

are simultaneously satisfiable.

The containment problem for XPath expressions that we looked at before is a special case of the
problem we consider. To check whether d |= e1 ⊆ e2, we construct QA{e1,¬e2} as in Proposition 1, and
take the product of it with the automaton for d.

Verifying complex containment statements under DTDs We can now extend the previous ex-
ample and check not a single containment, as is usually done [37], but arbitrary Boolean combinations of
XPath containment statements, without additional complexity. Assume that we are given a DTD d (or
any other schema specification presented by an automaton), a set {e1, . . . , en} of XPath expressions, and
a Boolean combination C of inclusions ei ⊆ ej . We now want to check whether d |= C, that is, whether C
is true in every tree T that conforms to d. We shall refer to size of C as ‖C‖; the definition is extended in
the natural way from the definition of ‖e‖.

Theorem 3 In the above setting, one can construct an unranked tree automaton of size ‖d‖·2O(‖C‖) whose
language is empty iff d |= C.

This is achieved by replacing ei ⊆ ej in C with the formula ¬Fch(e
′
i∧¬e

′
j) and ei 6⊆ ej in C with the formula

Fch(e
′
i ∧ ¬e

′
j), where e′i, e

′
j are TLtree translations of ei and ej produced by Theorem 1. Thus we can view

C as a TLtree formula αC . Now construct a QA for ¬αC , by Theorem 2, and turn it into an automaton that
checks whether the root gets selected. Now we take the product of this automaton with the automaton
for d. The result accepts counterexamples to C under d, and the result follows. The construction of the
automaton is polynomial-time in ‖d‖ and single-exponential time in ‖C‖.

7.2 Reasoning about views

Recall the problem outlined in Section 2. We have a view definition given by a query automaton QAV .
For each source tree T , it selects a set of nodes V = QAV(T ) which can also be viewed as a tree (we can
assume, for example, that QAV always selects the root). Source trees are required to satisfy a schema
constraint (e.g., a DTD). Since all schema formalisms for XML are various restrictions or reformulations
of tree automata, we assume that the schema is given by an automaton A.

If we only have access to V , we would like to be sure that secret information about an unknown source
T is not revealed. This information, which we assume to be coded by a Boolean query Q, would be
revealed by V if the answer to Q were true in all source trees T that conform to the schema and generate
V – that is, if certain

A
QAV

(Q;V ) were true. Thus, we would like to construct a new automaton A∗ that

accepts V iff certain
A
QAV

(Q;V ) is false, giving us some security assurances about the view.
In general, such an automaton construction is impossible: if QAV generates the yield of a tree, views

essentially code context-free languages. Combining multiple CFLs with the help of DTDs, we get an
undecidability result:
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Proposition 2 The problem of checking, for source and view schemas (automata) As and Av, a view
definition QAV , and a Boolean first-order query Q, whether there exists a view V accepted by the automaton
Av that satisfies certain

As

QAV
(Q;V ) = true, is undecidable.

Proof: Consider an arbitrary context-free grammar G over alphabet Σ. It can of course be viewed as
a DTD dG, since DTDs are extended CFGs. Create a new DTD d with a new root r and productions
r → g|ng, where g is the root of dG, and ng is a new symbol, as well as ng → Σ∗. The view DTD is
r → Σ∗.

The view definition QV selects the root and all the leaves labeled with symbols in Σ (i.e., skipping all
the nodes labeled with nonterminals of G and ng). The query Q is an existential FO query ∃x Png(x) –
i.e., it asks whether there exists a node labeled ng.

If we now have a view V (which is essentially a string sV ∈ Σ∗, written left-to-right, at children of the
root), then certain

A
QAV

(Q;V ) is true iff sV is not in the language of G (otherwise there would be a source

tree having g as the child of the root and thus no ng-labeled node). Hence decidability of certain
A
QAV

(Q;V )
being true would imply decidability of (non)universality of G – but the latter is of course undecidable.

Note that we can even assume wlog that we deal with ranked source trees, by putting the grammar
in the Chomsky normal form.

Schemas and queries required for this result are very simple, so to ensure the existence of the automaton
A∗, we need to put restrictions on the class of views. We assume that they are upward-closed as in [8]: if
a node is selected, then so is the entire path to it from the root.

Note that the upward-closure QA↑ of a query automaton QA can be obtained in linear time by adding
a bit to the state indicating whether a selecting state has been seen and propagating it up. Thus, we shall
assume without loss of generality that QAs defining views are upward-closed: if s ∈ QA(T ) and s′ is an
ancestor of s, then s′ ∈ QA(T ).

The key observation that we need is that for an upward-closed QA, satisfying the single-run condition,
its image is regular. Furthermore, it can be accepted by a small tree automaton:

Lemma 4 Let QA be an upward-closed query automaton that satisfies condition 1) of the definition of
single-run QAs. Then one can construct, in quadratic time, an unranked tree automaton A∗ that accepts
trees V for which there exists a tree T satisfying V = QA(T ). Moreover, the number of states of A∗ is at
most the number of states of QA.

Proof: Since QA is upward-closed, for each tree T = (D,λ), the answer QA(T ) is a prefix-closed subset
of D. In general, if D′ is an arbitrary prefix-closed subset of D, the restriction of T (viewed as a logical
structure) to domain D′ is isomorphic to another tree structure which we denote by T |D′ , throughout the
proof. Therefore if V is a Σ-labeled tree, the equality QA(T ) = V will stand for T |QA(T ) = V .

The automaton A∗ is constructed so as to simulate accepting runs of QA which select V from some
other tree “expanding” V .

Let QA = (Q,F,Qs, δ), then A∗ = (Qs, F∗, δ∗) has set of states Qs, coinciding with the selecting states
of QA, and set of final states F∗ = F ∩Qs.

We will now describe how the transition function δ∗ can be constructed from QA.
The transition function δ∗ can be constructed in several steps described below.

• First compute the set of states R ⊆ Q−Qs, which are reachable in runs of QA without going through
a selecting state. More precisely, we will call a run ρ of a query automaton on a tree T non-selecting
if Sρ(T ) = ∅.

Then R is the the set of all states q ∈ Q − Qs for which there exists a Σ-labeled tree T and a
non-selecting run of QA on T , such that ρ(ε) = q.
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The set R can be computed in O(‖QA‖2), via a standard reachability analysis algorithm. It is
constructed incrementally. At the first step, R consists of all states q ∈ Q−Qs such that ε ∈ δ(q, a)
for some a ∈ Σ. At step i > 0, we compute all states q ∈ Q−Qs such that δ(q, a)∩R∗ 6= ∅, for some
a ∈ Σ. These states are then added to R. The computation ends when no new states are produced.

At the first step, computing R requires only a linear time check on the states of each NFA δ(q, a),
for all q ∈ Q and a ∈ Σ. Thus the cost of the first step is linear in ‖QA‖.

At step i, the set R can be computed by checking non-emptiness of each NFA δ(q, a), for all q ∈ Q
and a ∈ Σ. In particular, first transitions over symbols outside R are removed from δ(q, a), and then
non-emptiness is checked for the resulting NFA. Both the cost of removing transitions and the cost
of checking non-emptiness are linear in the size ‖δ(q, a)‖.

Thus the cost of each step is linear in ‖QA‖. Since there are at most O(|Q|) steps, the overall cost
of computing R is O(‖QA‖2).

• Then, for each state q ∈ Qs and for each a ∈ Σ, the NFA δ∗(q, a) is constructed as follows. Observe
that δ(q, a) is an automaton over alphabet Q; let Sq,a its set of states and σq,a ⊆ S × Q × S its
transition function (we will denote them by S and σ when this does not arise confusion). We first
construct an NFA Aε(q, a) over alphabet Qs with ε-transitions, having set of states S, initial and
final states as in δ(q, a), and transition function σε ⊆ S × (Qs ∪ ε) × S. Intuitively σε is obtained
from σ by discarding all transitions with symbols outside Qs∪R and then replacing by ε all symbols
in R. More formally σε is defined as follows:

– For all q ∈ Qs, and for all states s1, s2 ∈ S, the transition (s1, q, s2) is in σε if and only if
(s1, q, s2) ∈ σ;

– For all states s1, s2 ∈ S, the transition (s1, ε, s2) is in σε if and only if (s1, q, s2) ∈ σ, for some
q ∈ R;

Finally δ∗(q, a) is obtained from Aε(q, a) by removing ε-transitions.

The cost of constructing δ∗(q, a) is dominated by the cost of removing ε-transitions, since the
construction of Aε(q, a) is linear in the size of σ. Removing ε-transitions can be done in time
O(|S|(|S| + |σ|)) without increasing the number of states. For that, we first do a reachability anal-
ysis on the ε-transition portion alone, producing, for each state s, its ε-closure L(s). The ε-closure
of a state s is the set of all states of S reachable using only ε-transitions; it can be computed in
time O(|σ|). Thus all ε-closures are computed in time O(|S| · |σ|). Now we replace each state s ∈ S
with L(s) and add a new transition (L(s), q, L(s′)) iff there exists a state s′′ ∈ L(s) and a transition
(s′′, q, s′) ∈ σε, with q ∈ Qs; this is done in time O(|S|(|S| + |σ|)).

Thus the overall cost of computing the transition function of A∗ is O(
∑

q∈Qs,a∈Σ |Sq,a|(|Sq,a|+ |σq,a|))

which is O(‖QA‖2).

Summing up, the overall cost of constructing A∗ from QA is quadratic in the total size of QA.
As a direct consequence of the construction of δ∗ we have:

Claim 2 For all q ∈ Qs, all q1q2 · · · qk ∈ Q∗
s, and all a ∈ Σ, the word q1q2 · · · qk belongs to δ∗(q, a) iff

R∗q1R
∗q2 · · · qkR

∗ ∩ δ(q, a) 6= ∅.

Proof: The word q1q2 · · · qk is accepted by δ∗(q, a) if and only if it is accepted by Aε(q, a). This is the
case if and only if in Aε(q, a) there exist states ←−si and −→si , for i = 1, . . . , k, such that: 1) the transition
function of Aε(q, a) contains transitions (←−si , qi,

−→si ), for each i = 1, . . . , k; 2) the state ←−−si+1 is reachable in
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Aε(q, a) from −→si via ε-transitions, for all i = 1, . . . , k − 1; 3) the state ←−s1 is reachable from an initial state
of Aε(q, a) via ε-transitions; 4) some final state of Aε(q, a) is reachable from −→sk via ε-transitions.

Directly by definition of Aε(q, a) this holds if and only if in δ(q, a) there exists a path from some
initial state to some final state with labels in R∗q1R

∗q2 · · · qkR
∗.

We are now ready to prove that A∗ is the desired automaton:

Claim 3 A∗ accepts a tree V iff there exists a tree T such that QA(T ) = V .

Proof: Assume A∗ accepts V and let ρ be an accepting run. We next prove by induction the following
statement:

(*) for each node s of V , if we let Vs the subtree of V rooted in s, then there exists a tree Ts and a run
ρs of QA on Ts such that:

1. ρs(ε) = ρ(s);

2. if we let Ds be Sρs
(Ts), then Ds is prefix-closed and Ts|Ds

= Vs.

We prove (*) by induction on the depth of the node s. If s is a leaf with label a then, since ρ
is an accepting run of A∗, we have that ε ∈ δ∗(ρ(s), a). Therefore by Claim 2, there exists a word
r1 · · · rn ∈ R∗ ∩ δ(ρ(s), a). For each ri we know, by definition of R, that there exists a tree Ti and a
non-selecting run ρi of QA on Ti reaching state ri in the root. We define Ts as the tree whose root, labeled
a, has n children such that Ti is the subtree rooted at the i-th child. The run ρs of QA on Ts is defined as
ρi on each Ti, for i = 1, . . . , n, and as ρ(s) on the root (ρ is a run of QA since r1 · · · rn are the states reached
at the children of the root and r1 · · · rn ∈ δ(ρ(s), a)). Clearly the root of Ts is the only node selected by
ρs, in fact each run ρi is non-selecting, while the state ρ(s) in the root is in Qs. As a consequence Ds is
clearly prefix-closed. Moreover Ts|Ds

is a tree of domain {ε} with label a, hence it coincides with Vs, the
subtree rooted in the leaf s of label a. This concludes the proof of the base case.

Now assume that s is a node with m > 0 children and label a. Since ρ is an accepting run of A∗, we
have ρ(s ·0) · · · ρ(s · (m−1)) ∈ δ∗(ρ(s), a). Again by Claim 2, there exists a word w0ρ(s ·0)w1ρ(s ·1) · · · ρ(s ·
(m− 1))wm ∈ δ(ρ(s), a), with wi ∈ R

∗.
By the induction hypothesis, there exist trees Ts·i and runs ρs·i satisfying conditions 1 and 2 above.

Moreover, exactly as in the base case, for each word wi ∈ R∗ we construct a forest of trees Twi
, and

non-selecting runs of QA on trees of Twi
reaching the sequence of states wi at the roots.

Then Ts is obtained by connecting the forest Tw0
Ts·0Tw1

Ts·2 · · ·Ts·(m−1)Twm
to a new common root

with label a.
The run ρs of QA on Ts is defined as:

• ρs·i on the trees Ts·i, for each i = 0, . . . ,m− 1;

• the non-selecting runs defined on trees of Twi
, for each i = 0, . . . ,m;

• ρ(s) on the root.

This defines a run of QA since states w0ρ(s · 0)w1ρ(s · 1) · · · ρ(s · (m− 1))wm are reached at the children
of the root and w0ρ(s · 0)w1ρ(s · 1) · · · ρ(s · (m− 1))wm ∈ δ(ρ(s), a).

The set of nodes Ds selected by ρs on Ts is:

• empty, in trees Twi
for each i = 0, . . . ,m (since the run is non-selecting on these trees);

• Ds·i in each subtree Ts·i, for i = 0, . . . ,m− 1 (since this is the set of nodes selected by ρs·i);
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• the root ε (since ρ(s) ∈ Qs).

By the induction hypothesis, the sets Ds·i are prefix closed, hence also Ds is prefix-closed. Finally, from
the description of Ds it follows that Ts|Ds

is a tree whose root has label a and m children: for each
i = 0, . . . ,m− 1, the subtree rooted in child i is Ts·i|Ds·i

. By the induction hypothesis, Ts·i|Ds·i
= Vs·i, for

each i = 0, . . . ,m− 1; therefore Ts|Ds
coincides with the subtree Vs rooted in s.

This proves (*). In particular (*) holds in the root of V , therefore there exists a tree Tε and a run ρε of
QA on Tε such that the set of selected nodes Dε is prefix-closed, Tε|Dε

= V and ρε(ε) = ρ(ε). This implies
that ρε is an accepting run of QA on Tε. In fact, since ρ is an accepting run of A∗ on V , the state ρ(ε)
is in F∗, but F∗ ⊆ F , then ρ(ε) is also final states of QA. Moreover, since QA satisfies condition 1 of the
definition of QAs, we have Dε = QA(Tε). Hence Tε|QA(Tε) = V . This shows QA(Tε) = V and concludes
the proof of one direction.

For the other direction, assume that there exists a tree T such that QA(T ) = V . Then, since V is
non-empty, there exists an accepting run ρ̂ of QA on T , and QA(T ) = Sρ̂(T ). Moreover, the equality
T |QA(T ) = V implies that the restriction of T to nodes QA(T ) is isomorphic to V (where T and V are
viewed as structures). Let h be such isomorphism, viewed as a one-to-one mapping from nodes of V to
nodes QA(T ); then we can write QA(T ) = {h(s)|s is a node of V }.

We define a run ρ of A∗ on V such that ρ(s) = ρ̂(h(s)), for each node s of V . We need to verify that
ρ is indeed a run of A∗, and that it is also accepting. In the following we prove that:

a) ρ is a mapping from nodes of V to Qs;

b) for each node s in V with label a and n ≥ 0 children,

ρ(s · 0) · · · ρ(s · (n− 1)) ∈ δ∗(ρ(s), a);

c) ρ(ε) ∈ F∗.

Item a) holds because, for each node s in V , we know that h(s) is in QA(T ), that is, in Sρ̂(T ). Hence
ρ̂(h(s)) ∈ Qs.

We now prove item b). For each node s ∈ V , with label a and n ≥ 0 children,

ρ(s · 0) · · · ρ(s · (n− 1)) = ρ̂(h(s · 0)) · · · ρ̂(h(s · (n − 1))).

Since h is a isomorphism, h(s) has label a and h(s · i) = h(s) · ji, for some ji and for each i = 0, . . . , n− 1.
Therefore

ρ(s · 0) · · · ρ(s · (n− 1)) = ρ̂(h(s) · j0) · · · ρ̂(h(s) · jn−1).

Now let m ≥ jn−1 the number of children of h(s) in T ; since ρ̂ is an accepting run of QA on T , we have
that ρ̂(h(s) · 0) · · · ρ̂(h(s) · (m− 1)) ∈ δ(ρ̂(h(s)), a).

We next prove that for each j = 0, . . . ,m − 1, with j /∈ {ji|i = 0, . . . , n − 1}, the state ρ̂(h(s) · j) is
in R. Observe that since h is an isomorphism, a descendant h(s) · w of h(s) (with w 6= ε) is in QA(T )
iff h(s) · w is a descendant of h(s · i) for some i in 0, . . . , n − 1. Thus, for each j = 0, . . . ,m − 1, with
j /∈ {ji|i = 0, . . . , n− 1}, neither the node h(s) · j nor its descendants are in QA(T ). Therefore, if Tj is the
subtree of T rooted in h(s) · j, the run ρ̂ on Tj is non-selecting, hence, ρ̂(h(s) · j) ∈ R. This implies that
the sequence of states ρ̂(h(s) · 0) · · · ρ̂(h(s) · (m− 1)) belongs also to R∗ρ̂(h(s) · j0)R

∗ · · · ρ̂(h(s) · jn−1)R
∗,

where ρ̂(h(s) · ji) ∈ Qs for each i = 0, . . . , n − 1. As a consequence, by Claim 2, the sequence of states
ρ̂(h(s) ·j0) · · · ρ̂(h(s) ·jn−1) belongs to δ∗(ρ̂(h(s)), a); or in other words, ρ(s ·0) · · · ρ(s ·(n−1)) ∈ δ∗(ρ(s), a).
This proves b).

It remains to prove c). Notice that ρ(ε) = ρ̂(h(ε)) and h(ε) = ε (since h is an isomorphism and
ε ∈ QA(T )). Therefore ρ(ε) is equal to ρ̂(ε) which belongs to F , the final states of QA(T ). Moreover ρ(ε)
is in Qs, thus ρ(ε) ∈ F∗, the final states of A∗.
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This proves c), shows that ρ is an accepting run of A∗ on V and concludes the proof of the claim.

We have already shown that A∗ can be computed in time O(‖QA‖2), moreover the number of states
of A∗ coincides with the selecting states of QA, thus it is bounded by |Q|. This, together with Claim 3,
concludes the proof of the lemma.

To apply Lemma 4 to the problem of finding certain answers certain
A
QAV

(Q;V ), we now take the
product of QAV with A and the automaton for ¬Q (the selecting states in the product will be determined
by QAV), and obtain:

Theorem 4 Let QAV be an upward-closed and single-run query automaton with states QV , let A be an
unranked tree automaton with states QA defining a schema, and let A¬Q be an automaton accepting trees
for which Q is false, and having states Q¬Q. Then one can construct, in polynomial time, an unranked
tree automaton A∗ such that

1. the number of states of A∗ is at most |QV | · |QA| · |Q¬Q|

2. A∗ accepts V ⇔ certain
A
QAV

(Q;V ) = false.

Proof: Observe that certain
A
QAV

(Q;V ) is false if and only if there exists a tree T accepted by both A and
A¬Q, such that QAV(T ) = V . This can be restated by defining the product query automaton

QA = QAV ×A×A¬Q

with selecting states consisting of all the triples whose first component is a selecting state of QAV . Clearly
for each tree T , the query answer QA(T ) coincides with QAV(T ) if T is accepted by A and A¬Q, and is
empty otherwise. This implies that also QA is upward-closed and:

certain
A
QAV

(Q;V ) is false iff there exists a tree T such that QA(T ) = V.

The query automaton QA is no longer single-run, because it does not accept all trees. But for each
accepting run ρ of QA on a tree T , we have Sρ(T ) = QAV(T ). Therefore QA satisfies condition 1 of the
definition of QA.

Then, by Lemma 4, we can construct an automaton A∗ that accepts a tree V iff certain
A
QAV

(Q;V ) is
false. The construction of A∗ requires first the computation of QA and then the construction of A∗ form
QA.

Hence, the algorithm consists of two steps:

1. constructing the product QA QAV ×A×A¬Q, and

2. applying the algorithm of Lemma 4 to this QA to obtain an automaton A∗.

The product query automaton QA can be computed in time polynomial in ‖QAV‖ · ‖A‖ · ‖A¬Q‖.
Therefore, by Lemma 4, A∗ can be computed in time polynomial in ‖QAV‖ ·‖A‖ ·‖A¬Q‖, and has number
of states at most |QV | · |QA| · |Q¬Q|.

This concludes the proof of the Theorem.

Combining Theorem 4 with previous translations into single-run QAs and properties of the latter, we
obtain algorithms for verifying properties of views given by XPath expressions. Revisiting our motivating
example from Section 2, we make the following assumptions:
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• The view definition is given by an XPath (conditional or core) expression eV ; the view V of a source
tree T has all the nodes selected by eV and their ancestors;

• The schema definition is given by a DTD d;

• The query Q is an arbitrary Boolean combination of containment statements e ⊆ e′, where e, e′ come
from a set E of XPath expressions.

Then, for a given V , we want to check if certain
d
eV

(Q;V ) is false: that is, the secret encoded by Q cannot
be revealed by V , since not all source trees T that conform to d and generate V satisfy Q. Then, using
the algorithm from the proof of Theorem 4, we have the following:

Corollary 3 In the above setting, one can construct in time polynomial in ‖d‖ and exponential in ‖E‖+
‖eV ‖ an unranked tree automaton A∗ with ‖d‖·2O(‖eV ‖+‖E‖) states that accepts a view V iff certain

d
eV

(Q;V )
is false.

Note that again the exponent contains the size of typically small XPath expressions, and not the
potentially large schema definition d.

8 Conclusion

There are several extensions we would like to consider. One concerns relative specifications often used
in the XML context – these apply to subtrees. Results of [22, 3] on model-checking of now and within
operators on words and nested words indicate that an exponential blowup is unavoidable, but there could
well be relevant practical cases that do not exhibit it. We would like to see how LTL-to-Büchi optimization
techniques (e.g., in [13, 19]) could be adapted in our setting, to produce automata of smaller size. We also
would like to see if automata can be used for reasoning about views without imposing upward-closeness
of [8], which does not account for some of the cases of secure XML views [15]. One could look beyond
first-order at logics having the power of MSO or ambient logics with known translations into automata,
and investigate their translations into QAs [10, 20, 16].
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