3,217 research outputs found

    XML-based approaches for the integration of heterogeneous bio-molecular data

    Get PDF
    Background: The today's public database infrastructure spans a very large collection of heterogeneous biological data, opening new opportunities for molecular biology, bio-medical and bioinformatics research, but raising also new problems for their integration and computational processing. Results: In this paper we survey the most interesting and novel approaches for the representation, integration and management of different kinds of biological data by exploiting XML and the related recommendations and approaches. Moreover, we present new and interesting cutting edge approaches for the appropriate management of heterogeneous biological data represented through XML. Conclusion: XML has succeeded in the integration of heterogeneous biomolecular information, and has established itself as the syntactic glue for biological data sources. Nevertheless, a large variety of XML-based data formats have been proposed, thus resulting in a difficult effective integration of bioinformatics data schemes. The adoption of a few semantic-rich standard formats is urgent to achieve a seamless integration of the current biological resources. </p

    Heterogeneous biomedical database integration using a hybrid strategy: a p53 cancer research database.

    Get PDF
    Complex problems in life science research give rise to multidisciplinary collaboration, and hence, to the need for heterogeneous database integration. The tumor suppressor p53 is mutated in close to 50% of human cancers, and a small drug-like molecule with the ability to restore native function to cancerous p53 mutants is a long-held medical goal of cancer treatment. The Cancer Research DataBase (CRDB) was designed in support of a project to find such small molecules. As a cancer informatics project, the CRDB involved small molecule data, computational docking results, functional assays, and protein structure data. As an example of the hybrid strategy for data integration, it combined the mediation and data warehousing approaches. This paper uses the CRDB to illustrate the hybrid strategy as a viable approach to heterogeneous data integration in biomedicine, and provides a design method for those considering similar systems. More efficient data sharing implies increased productivity, and, hopefully, improved chances of success in cancer research. (Code and database schemas are freely downloadable, http://www.igb.uci.edu/research/research.html.)

    XML in Motion from Genome to Drug

    Get PDF
    Information technology (IT) has emerged as a central to the solution of contemporary genomics and drug discovery problems. Researchers involved in genomics, proteomics, transcriptional profiling, high throughput structure determination, and in other sub-disciplines of bioinformatics have direct impact on this IT revolution. As the full genome sequences of many species, data from structural genomics, micro-arrays, and proteomics became available, integration of these data to a common platform require sophisticated bioinformatics tools. Organizing these data into knowledgeable databases and developing appropriate software tools for analyzing the same are going to be major challenges. XML (eXtensible Markup Language) forms the backbone of biological data representation and exchange over the internet, enabling researchers to aggregate data from various heterogeneous data resources. The present article covers a comprehensive idea of the integration of XML on particular type of biological databases mainly dealing with sequence-structure-function relationship and its application towards drug discovery. This e-medical science approach should be applied to other scientific domains and the latest trend in semantic web applications is also highlighted

    A Molecular Biology Database Digest

    Get PDF
    Computational Biology or Bioinformatics has been defined as the application of mathematical and Computer Science methods to solving problems in Molecular Biology that require large scale data, computation, and analysis [18]. As expected, Molecular Biology databases play an essential role in Computational Biology research and development. This paper introduces into current Molecular Biology databases, stressing data modeling, data acquisition, data retrieval, and the integration of Molecular Biology data from different sources. This paper is primarily intended for an audience of computer scientists with a limited background in Biology

    The Benefits of Using XML Technologies in Astronomical Data Retrieval and Interpretation

    Get PDF
    This paper describes a solution found during recent research that could provide improvements in the efficiency, reliability and cost of retrieving stored astronomical data. This solution uses XML Technologies in showing that when querying a variety of astronomical data sources a standardised data structure can be output into an XML query results Document. This paper shows the astronomical XMLSchema that has been partially developed in conjunction with simple custom supporting system software. It also discusses briefly possible future implications

    Dynamic integration of biological data sources using the data concierge

    Get PDF

    A survey of visualization tools for biological network analysis

    Get PDF
    The analysis and interpretation of relationships between biological molecules, networks and concepts is becoming a major bottleneck in systems biology. Very often the pure amount of data and their heterogeneity provides a challenge for the visualization of the data. There are a wide variety of graph representations available, which most often map the data on 2D graphs to visualize biological interactions. These methods are applicable to a wide range of problems, nevertheless many of them reach a limit in terms of user friendliness when thousands of nodes and connections have to be analyzed and visualized. In this study we are reviewing visualization tools that are currently available for visualization of biological networks mainly invented in the latest past years. We comment on the functionality, the limitations and the specific strengths of these tools, and how these tools could be further developed in the direction of data integration and information sharing

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure
    corecore