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1. Introduction 

Biological pathway data is the key resource for biologists worldwide. Interestingly, most of 

these sources that generate, update, and analyze data are open source. One of the 

observations that motivated this research work is that, the repositories of data created by a 

variety of laboratories and research units worldwide represent same pathways with 

significant details. Generally, if the pathway data has resulted from experimentation, then it 

is expected that across different resources, under similar conditions, pathways would be 

exactly identical and biologists may pickup from any source. Interestingly, almost all of the 

biological data sources refer to data integration of some kind. It may involve rigorous 

integration mechanisms within the data source and the purpose of integration may change 

the perspective of looking at the integration.  

These efforts in integration may be either local to the source or lack details associated with 

integration within a pathway, across pathways, or from various data sources etc. Further, 

the key attributes or design criteria may not be well documented and or may not be readily 

available to the biologist. In other words, the integration may be achieved as vertical 

integration (within the data source), or horizontal integration (across data sources). Since 

most of the extensively integrated data sources (plants or humans) like BioCyc-level-I, 

Reactome are human curated, it is hard to identify the integration done by the sources like; 

BioCyc. Also, on a similar note, it may not be apparent to find exactly when the data was 

integrated looking at a pathway.  

Data in general refers to a collection of results, including the results of experience, 

observation, or experiment, or a set of premises and can be utilized at the maximum when 

made available to all in a common format. Different organizations and research laboratories 

around the world store the data in their own formats; this diversity of data sources is caused 

due to many factors including lack of coordination among the organizations and research 
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laboratories. These intellectual gaps can be bridged by adopting new technology, mergers, 

acquisitions, and geographic coordination of collaborating groups [1]. 

For the open source biological databases, it is common for the biologists and researchers to 

refer to many databases in order to pursue inference or analysis; though it is one of the most 

challenging tasks. Biological pathway data integration is aimed to work with repositories of 

data from a variety of sources. As such, two or more databases may not provide identical 

information for a given pathway, but integrating these two databases may yield a richer 

resource for analysis. Additionally, the conditions under which data is collected, either by 

experimentation or by collecting evidence of the published material, in either case the 

supporting references play a crucial role and is of interest to the biologists in making the 

analysis more meaningful. At present there are over 200 biological pathway databases. 

However, very few of them are independently created. Some of these databases may be 

derived from different data sources. Unfortunately, the documentation often does not reveal 

details of the data collection, sources, and dates. Further, the research groups involved in 

analysis of the data usually selectively use data from a single data source. For example, for 

yeast studies, the Saccharomyces Genome Database (SGD) is the reference for most analyses 

[2].  

In case of biological pathway data, rapid accumulation of genomic and proteomic data have 

made two major bioinformatics problems apparent.  

 The lack of communication between different bioinformatics data resources; whether 

they are databases or individual analysis programs.  

 Biological data are hierarchical and highly related yet are conventionally stored 

separately in individual database and in different formats. 

 Additionally, they are governed more by how data is obtained rather than by what they 

mean.  

Most commercially available bioinformatics systems perform functional analysis using a 

single data source; an approach that emphasizes pathway mapping and relationship 

inference based on the data acquired from multiple data sources. Each pathway modality in 

the data has its own specific representation issues which must be understood before 

attempting to integrate across modalities. 

1.1. Overview 

There has been a dramatic increase in the number of large scale comprehensive biological 

databases that provide useful resources to the community like; Biochemical Pathways 

(KEGG, AraCyc, and MapMan), Protein Interactions (biomolecular interaction network 

database), or systems like; Dragon Plant Biology Explorer and Pathway Miner for 

integrating associations in metabolic networks and ontologies [3-8]. Other databases such as 

Regulon DB, PlantCARE, PLACE, EDP:Eurokaryotic promoter database, Transcription 

Regulatory Regions Database, Athamap, and TRANSFAC store information related to 

transcriptional regulation[9-15].  
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The aim of molecular biology is to understand the regulation of protein synthesis and its 

reactions to external and internal signals. All the cells in an organism carry the same 

genomic data, yet their protein makeup can be drastically different; both temporally and 

spatially, due to regulation. Protein synthesis is regulated by many mechanisms at its 

different stages. These include mechanisms for controlling transcription initiation, RNA 

splicing, mRNA transport, translation initiation, post-translational modifications, and 

degradation of mRNA/protein. One of the main junctions at which regulation occurs is 

mRNA transcription. A major role in this machinery is played by proteins themselves that 

bind to regulatory regions along the DNA, greatly affecting the transcription of the genes 

they regulate [16]. Friedman introduces a new approach for analyzing gene expression 

patterns that uncovers properties of the transcriptional program by examining statistical 

properties of dependence and conditional independence in the data. 

For protein interactions, it is intended to connect related proteins and link biological functions 

in the context of larger cellular processes [17]. The content of these data sources typically 

complements the experimentally determined protein interactions with the ones that are 

predicted from gene proximity, fusion, co-expressed data, as well as those determined by 

using phylogenetic profiling. Each pathway modality in the data has its own specific 

representation issues which must be understood before integration across modalities is 

attempted. At present, the bioinformatics database owner only develops private system to 

provide user with data query and analysis services; such as NCBI develops Entrez database 

query system which is used on GenBank. European Molecular Biology Laboratory (EMBL) 

develops Sequence Retrieval Systems. The EMBL Nucleotide Sequence Database maintained 

at the European Bioinformatics Institute (EBI), incorporates, organizes, and distributes 

nucleotide sequences from public sources [18]. The database is a part of an international 

collaboration with DDBJ (Japan) and GenBank (USA). Data are exchanged between the 

collaborating databases on a daily basis to achieve optimal synchrony. The key point is how to 

share the heterogeneous databases and make a common query platform for users [19].  

Friedman [16] describes early microarray experiments that examined few samples and 

mainly focused on differential display across tissues or conditions of interest. Such 

experiments collect enormous amounts of data, which clearly reflects many aspects of the 

underlying biological processes. An important challenge is to develop methodologies that 

are both statistically sound and computationally tractable for analyzing such data sets and 

inferring biological interactions from them. Most of the analysis tools currently used are 

based on clustering algorithms. The clustering algorithms attempt to locate groups of genes 

that have similar expression patterns over a set of experiments. Such analysis has proven to 

be useful in discovering genes that are co-regulated and/or have similar function. A more 

ambitious goal for analysis is to reveal the structure of the transcriptional regulation 

process. This is clearly a hard problem. Not only the current data is extremely noisy, but, 

mRNA expression data alone only gives a partial picture that does not reflect key events 

such as; translation and protein (in) activation. Finally, the amount of samples, even in the 

largest experiments in the foreseeable future, does not provide enough information to 

construct a fully detailed model with high statistical significance.  
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Some conventional bioinformatics approaches identify hypothetical interactions between 

proteins based on their three dimensional structures or by applying text mining techniques. 

Emerging protein chip technologies are expected to permit the large scale measurement of 

protein expression levels. Corresponding structural data are stored in data source such as 

protein data bank and represent invaluable sources of understanding of protein structures, 

functions and interactions. Successful use of high throughput protein interaction 

determination techniques such as yeast two hybrids, affinity purification followed by mass 

spectrometry and phage display has shifted research focus from a single gene/protein to more 

coherent network perspectives. Large scale protein-protein interaction data and their 

complexes are currently available for a number of organisms and data are stored in several 

interaction data sources such as BIND [6], DIP [20], IntAct [21], GRID [22] and MINT [23] that 

is all equipped with basic bioinformatics tools for protein network analysis and visualization. 

INCLUSive is a web portal and service registry for microarray and regulatory sequence 

analysis [24]. This provides a comprehensive index for all data integration research projects.  

The integration and management technique of heterogeneous sequence data from public 

sequence data source is widely used to manage diverse information and prediction. It is 

important for the biologists to investigate these heterogeneous sources and connect the 

public biological data source and retrieve sequences which are similar to sequences they 

have, and the results of their retrieval are used in homology research, functional analysis, 

and predication. However, there are few software packages available to deal with the 

sequence data in most biological laboratories and they are stored in file formats. File formats 

is another important issue for biological pathway data sources. XMl, SBML (systems biology 

markup language), KBML (KEGG), BSML (Bioinformatic Sequence Markup Language) 

based on XML, and a variety of versions of XML are used for representing the complex and 

hierarchical biological data. Each flat file from public biological database has different 

format. Recent tools which convert formats among standards are implemented in JAVA or 

Perl module. The constraints associated with biological pathway formats are the following;  

 Conversion among different formats needs different parsers to extract the user 

interesting field.  

 Formats can be modified anytime.  

 Understand the range of field, its value is difficult, and data types in the same field in 

each format can be different.  

From the discussions above, one of the major challenges of the modern bioinformatics 

research is therefore to store, process, and integrate biological data to understand the inner 

working of the cell defined by complex interaction networks. Additionally, the integration 

mechanisms may not register the important details like, copies of inputs files and time of 

integration along with the integrated output file.  

In this chapter, issues related to biological pathway data integration system are discussed 

and a user friendly data integration algorithm across data sources for biological pathway, 

particularly, metabolic pathway as a case is presented. i.e. the data integration (BPDI) 

algorithm that integrates pathway information across data sources and also extracts the 
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abstract information embedded within them are addressed. Today, a bioinformatics 

information system typically deals with large data sets reaching a total volume of about one 

terabyte [25]. Such a system serves many purposes; 

 User can select the data sources and  assign confidence to each selected data source 

  It organizes existing data to facilitate complex queries 

 It infers relationships based on the stored data and subsequently predicts missing 

attribute values and incoming information based on multidimensional data.  

 Data marts (extension of data warehouse) support different query requests.  

2. Data management and integration 

The Pathway Resource List contains over 150 biological pathway databases and is growing 

[26]. Usually, first step for the user is to identify a subset of these data sources for integration. 

To consolidate all the knowledge for a particular organism, extract the pathways from each 

database need to be extracted and transformed into a standard data representation before 

integration. Representation of the pathway data in each data source poses another challenge as 

each pathway modality has its own specific representation issues which must be understood 

before attempting integration across modalities. For example, metabolic pathways, signal 

transduction pathways, protein-protein interaction, gene regulation etc.  

Commonly employed styles of data integration may be implemented in different contexts 

and under requirements, in order to reuse the data across applications for research 

collaboration. Some of the data integration and management efforts are presented in [27-32]. 

Several major approaches have been proposed for data integration, which can be roughly 

classified into five groups [33-34] namely; data warehousing, federated databasing, service-

oriented integration, semantic integration and wiki-based integration. Across all of these 

groups, to a significant extent, an increasingly important component of data integration is 

the community effort in developing a variety of biomedical ontologies to deal in a more 

specific manner with the technicality and globality of descriptors and identifiers of 

information that has to be shared and integrated across various resources. Variety of 

approaches for data integration is discussed below. 

Data Warehousing 

The data warehouse approach offers a “one-stop shop” solution to ease access and 

management of a large variety of biological data from different data sources. The user does 

not need to access many web sites for multiple data sources. Despite its advantages, the data 

warehouse approach has a major problem; it requires continuous and often human-guided 

updates to keep the data comprehensive of the evolution of data sources, resulting in high 

costs for maintenance. Many biological data sources change their data structures roughly 

twice a year. 

Data integration with Federated Approach 

Unlike data warehousing (with its focus on data translation), federated databasing focuses 

on query translation. The federated database fetches the data from the disparate data 
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sources and then displays the fetched data for its user base. Queries in federated databases 

are executed within remote data sources and results displayed in federated databases are 

extracted remotely from the data sources. Due to this capability, federated databasing has 

two major advantages.  

- Federated databases can be regarded as an on-demand approach to provide immediate 

access to up-to-date data deposited in multiple data sources.  

- Compared with data warehousing, federated databasing does not replicate data in data 

sources; therefore, it presents relatively inexpensive costs for storage and curation. 

However, federated databasing still has to update its query translation to keep pace 

with data access methods at diverse remote data sources.  

Service –Oriented Approach 

A decentralized approach is also being developed, in which individual data sources agree to 

open their data via Web Services (WS). The service-oriented approach enables data 

integration from multiple heterogeneous data sources through computer interoperability. 

The service-oriented approach features data integration through computer-to-computer 

communication via Web API and up-to-date data retrieval from diverse data sources. 

Heterogeneous data integration requires that many data sources should become service 

providers by opening their data via WS and by standardizing data identities and 

nomenclature to ease data exchange and analysis. 

Semantic Web 

Most web pages in biological data sources are designed for human reading. RDF provides 

standard formats for data interchange and describes data as a simple statement, containing a 

set of triples: a subject, a predicate, and an object. Any two statements can be linked by an 

identical subject or object. OWL builds on RDF and Uniform Resource Identifier (URI) and 

describes data structure and meaning based on ontology, which enables automated data 

reasoning and inferences by computers. Application of semantic Web technologies is a 

significant advancement for bioinformatics, enabling automated data processing and 

reasoning. The semantic integration uses ontologies for data description and thus represents 

ontology-based integration. [27] reviews the current development of semantic network 

technologies and their applications to the integration of genomic and proteomic data. His 

work elaborates on applying a semantic network approach to modeling complex cell 

signaling pathways and simulating the cause-effect of molecular interactions in human 

macrophages. [31] Illustrates his approach by comparing federated approach versus 

warehousing versus semantic web using multiple sources.  

Wiki-based Integration 

A weakness common to all the above approaches is that the quantity of users’ participations 

in the process is inadequate. With the increasing volume of biological data, data integration 

inevitably will require a large number of users’ participations. A successful example that 

harnesses collective intelligence for data aggregation and knowledge collection is 

Wikipedia: an online encyclopedia that allows any user to create and edit content. It is 



 
Hierarchical Biological Pathway Data Integration and Mining 9 

infeasible to integrate such large amounts of data into a single point (such as a data 

warehouse). Data sources are developed for different purposes and fulfill different 

functions. Therefore, it is promising to establish an efficient way for data exchange among 

these distributed and heterogeneous data sources. However, a dozen of data sources are 

designed merely for data storage, but not for data exchange.  

2.1. Survey of Pathway Databases and Integration Efforts 

Table 1 below shows various data integration efforts and projects for biological pathways 

worldwide.  

Biochemical pathways                    Description  

BRITE Bio molecular Relations in Information Transmission and Expression 

EcoCyc/MetaCyc  Encyclopaedia of E. coli genes and metabolism; Metabolic 

encyclopedia 

EMP Metabolic pathways 

KEGG Kyoto encyclopaedia of genes and genomes 

Biochemical 

Pathways 

Enzyme database and link to biochemical pathway map 

Interactive Fly Biochemical pathways in Drosophila 

Metabolic Pathway Metabolic pathways of biochemistry 

Molecular 

interaction 

Kohn molecular interaction maps 

Malaria parasite  Malaria Parasite metabolic pathways 

aMAZE Protein function and biochemical pathways project at EBI 

PathDB Metabolic pathway information 

UM-BBD Microbial bio catalytic reactions and biodegradation pathways 

primarily for xenobiotic, chemical compounds 

WIT Function assignments to genes and the development of metabolic 

models 

THCME Medical 

Biochemistry 

Description of several metabolic and biochemical pathways 

Signaling pathways 

Apoptosis Pathways of apoptosis at KEGG 

BBID Database of images of biological pathways, macromolecular 

structures, gene families, and cellular relationships 

BioCarta Several signalling pathways 

BIND The bio molecular interaction network database 
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CSNDB Cell signalling networks database  

GeneNet Information on gene networks, groups of co-ordinately working 

genes 

GeNet Information on functional organization of regulatory gene networks 

SPAD Signalling pathway database 

STKE Pathway information 

TransPath Pathways involved in the regulation of transcription factors 

Protein-protein interactions 

Blue Print Biological interaction database 

CYGD  Protein-protein interaction map at Comprehensive Yeast Genome 

Database 

CytoScape Visualization and analysis of biological network 

DIP Database of interacting proteins 

GenMAPP Gene Map Annotator and Pathway Profiler 

GRID The General Repository for Interaction Datasets 

Proteome Bio 

knowledge 

Biological information about proteins comprise Incyte's Proteome Bio 

Knowledge Library 

Protein Interaction 

Domains 

Signal transduction 

Reactome A knowledgebase of biological processes 

Yeast Interaction 

Pathway 

PathCalling Yeast Interaction Database at Curagen 

Table 1. Various Data integration Efforts 

Other efforts towards designing new applications for data mining and integration at the 

K.U.Leuven Center for Computational Systems Biology include;  

- aBandApart (2007): A software to mine MEDLINE abstracts to annotate human genome 

at the level of cytogenic bands. 

- ReModiscovery (2006): An intuitive algorithm to correlate regulatory programs with 

regulators and corresponding motifs to a set of co-expressed genes  

- LOOP (2007): A toll to analyze ArrayCGH loop designs. ArrayCGH is a microarray 

technology that can be used to detect aberrations in the ploidy of DNA segments in the 

genome of patients with congenital anomalies. 

- SynTReN (2006): A generator of synthetic gene expression data for design and analysis 

of structure learning algorithms.  

- BlockAligner (2005): Provides an API in R to query BioMart databases such as Ensemble. 

- BlockSampler (2005): Finds conserved blocks in the upstream region of sets of 

orthologous genes. 
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- M@cBETH (2005) (a Microarray Classification Benchmarking Tool on a host server): 

Web service offers the microarray community a simple tool for making optimal two 

class predictions. 

- TxTGate (2004): A literature index database designed towards the summarization and 

analysis of groups of genes based on text.  

- Endeavour is a software application for the computational prioritization of test genes 

based on training genes using different information sources such as MEDLINE abstracts 

and LocusLink textual description, gene ontology, annotation, BIND protein 

interactions, and Transcription Factor Binding Sites (TFBS). 

- TOUCAN2 (2004): A workbench for regulatory sequence analysis on metazoan 

genomes: Comparative genomics detection of significant transcription factor binding 

sites and detection of cis-regulatory modules in sets of coexpressed/ coregulated genes. 

- INCLUSive (2003): A suit of algorithms and tools for the analysis of gene expression 

data and the directory of cis-regulatory sequence elements.  

- Adaptive Quality-Based Clustering (AQBC) (2002): AQBC is a heuristic, iterative two-

step algorithm to cluster gene expression data.  

- MotifSampler (2001): Finds over represented motifs in the upstream region of a set of 

co-regulated genes.  

2.2. Types of pathways  

Biological networks are studied and modeled at different description levels establishing 

different pathway types, For example; metabolic pathways describe the conversion of 

metabolites by enzyme-catalyzed chemical reactions given by their stoichiometric equations, 

such as the main pathways of the energy household as Glycolysis or Pentose Phosphate 

pathway. Another pathway type is signal transduction pathways, also known as 

information metabolism, explaining how cells receive, process, and responds to information 

from the environment. A brief description about various types of pathways is given  

below.  

A. Metabolic Pathways describe the network of enzyme-catalyzed reactions that release 

energy by breaking down nutrients (catabolism) and building up the essential compounds 

necessary for growth (anabolism). Experimentally determined metabolic pathways have 

established for a few model organisms, but most metabolic pathways databases contain 

pathway data that has been computationally inferred from the genomes annotations. 

Because most genome annotations are incomplete, metabolic pathway databases contain 

pathway holes which can only be addressed by experiment or computational inference. A 

good test of a reconstructed metabolic network is to ask if it can produce the set of essential 

compounds necessary for growth, given a known minimal nutrient set. To solve this 

problem, metabolism can be represented  as a bipartite directed graph, where one set of 

nodes represents metabolites, the other set represents biochemical reactions with labeled 

edges used to indicate relationships between nodes (reaction X produces metabolite Y, or 

metabolite Y is-consumed-by reaction X. 
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B. Gene Regulatory Networks describe the network of transcription factors that bind 

regulatory regions of specific genes and activate or repress their transcription. Gene regulatory 

networks or transcription networks have been found to contain recurring biochemical wiring 

patterns, termed network motifs, which carry out key functions. How does one find the most 

significant recurring network motif in a given transcriptional network? To answer this 

question, transcription networks can be described as directed graphs, in which nodes are 

genes, and edges represent transcription interactions, where a transcription factor encoded by 

one gene modulates and transcription rate of the second gene. 

C. Signaling Pathways describe biochemical reactions for information transmission and 

processing. Unlike metabolic pathways that catalyze small molecule reactions, signaling 

pathways involve the post translational modification of proteins leading to the downstream 

activation of transcriptional factors. They are often formed by cascades of 

activated/deactivated proteins or protein complexes. Such signal transduction cascades may 

be seen as molecular circuits which mediate the sensing and processing of stimuli. They 

detect, amplify and integrate diverse external signals to generate responses, such as changes 

in enzyme activity, gene expression, or ion channel activity. Integration of signaling 

pathways poses a greater challenge than with metabolic pathways because of diversity of 

representation schemes for signaling. Some Signaling databases like; PATIKA [35] and 

INHO [36] use compound graphs to represent signaling pathways, while other object 

oriented databases use inheritance to establish relationships between post translational 

modifications of proteins. 

D. Protein-Protein Interaction: In proteomic analysis, target genes are used as bait in 

immuno-precipitation to identify potential binding patterns in cell lysate. The higher level 

databases such as; KEGG [3], TRANSPATH [37], ReactomeSTKE [38], and MetaCyc [39] 

networks of interacting proteins with definite cellular processes including metabolism, 

signal transduction and gene regulation. These resources typically represent biological 

information in the form of individual pathway diagrams summarizing experimental results 

collected during years of research on particular cellular functions. Currently, no single 

method is capable of predicting all possible protein interactions and such integrative 

resources as SPRING and predictome combine multiple theoretical approaches to increase 

prediction accuracy and coverage. A problem with these networks is the high number of 

false alarms. 

E. Ontology Vocabulary Mapping: Ontology provides a formal written description of a 

specific set of concepts and their relationships in a particular domain. GO ontology has three 

categories molecular function, biological process and cellular composition. Integration of 

signaling pathways poses a greater challenge than with metabolic pathways because of the 

diversity of representation schemes for signaling.  

2.3. Integration issues 

Biological plant pathway data integration is a multi-step process. It includes integration of 

various types of pathways, interactions, and gene expression. On another level, it includes 
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various species and different databases. A hierarchical pathway data integration scheme is 

presented in Figures 1 and 2 below. 

Each database also defines supporting evidence codes specifically defined to consider 

criteria for selection, however may not be explicitly illustrated and that may not be similar 

across various sources. This heterogeneity in evidence codes and their representation needs 

consideration [40]. Since the evidence code may originate as a result of experimentation or 

as evidence from published text, integration of the plant pathway data across databases 

involves standardizing the evidence code prior to the integration. The first step is to 

integrate the evidence codes for a given pathway across database. Biological databases are 

results of experiments carried out with different conditions and controls, mostly open 

source, and employs a variety of formats [41]. Integrating such databases is a multi-step 

procedure and involves handling the complexities associated with heterogeneous data 

integration. 

 

Figure 1. Hierarchical Pathway data Integration Scheme 

A. Ontology Development 

Since isolation of ontologies complicates data integration, so in order to use ontologies at 

their full potential, concepts, relations, and axioms must be shared when possible. Domain 

ontologies must also be anchored to an upper ontology in order to enable the sharing and 

reuse of knowledge. 

B. Synonym Integration  

While integrating information about a pathway from a database, entities require 

independent approach. One such entity is synonym. Each database lists a set of synonyms 

that need integration to configure a pool of synonyms without causing duplication. In the 
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data integration platform developed the synonym integration has issues like avoiding 

duplication and accommodating number of synonyms associated with one entity. Some 

pathways may include two compounds with different names but having same empirical 

formula. In such cases integration is challenging as biologists may be further interested in 

reviewing the chemical structure along with the integrated output. However, almost all 

biological pathways are vertically extendable and can associate further details. The point 

here is to include all the salient features (from a biologist’s standpoint) of the pathway. 

There is no thumb rule to define biologist’s interests.  

C. Evidence Codes and issues 

For defining an evidence code with an entity, granularity is another variable. Depending on 

the database, EV may be either for an entity within a pathway such as a gene, a compound, 

reaction or enzyme or for the pathway itself. In other words, many databases use the same 

evidence code for an entire pathway and map that code to each interaction in the pathway. 

Others assign different EV codes to each interaction and sometimes to each compound or 

gene.  

The Gene Ontology (GO) defines a set of thirteen EVs that assign evidence to gene function. 

BioCyc defines a class hierarchy structure of four basic EVs with subclasses. MetNetDB 

incorporates four EVs [42]. KEGG defines only one EV. Ideally, the EVs also reflect on the 

individual nodes within a specific pathway. Figure 2 depicts the data integration platform 

highlighting multiple data sources and integration based on user inputs.  

 

Figure 2. Data Integration Platform 

1. Many databases use the same evidence code for an entire pathway and map that code 

to each interaction in the pathway. Others assign codes to each interaction and 

sometimes each compound or gene. In other words, the granularity to which we can 

assign an EV may be either an entity such as a gene, a compound, reaction or enzyme 

within or across the pathway itself. The Gene Ontology (GO) defines a set of thirteen 

EVs that assign evidence to gene function [43]. BioCyc defines a class hierarchy 

structure of four basic EVs with subclasses [17]. MetNetDB incorporates four EVs. 

KEGG defines only one EV. Ideally, the EVs also reflect on the individual nodes within 

a specific pathway.  
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2. Since pathway information cannot be assessed with any reliability, it is hard to assign a 

measure of the orrectness/authenticity to any one database. We propose assignment to 

be user selective to resolve the issue. To combine the information, a heuristic rule set 

computes the composite EVs for the integrated database. The unification can be done 

using any one EV code set as a key. Since each database follows their own standard, it is 

likely that EVs may not find a perfect match among the databases or that there may be 

more than one likely match. To handle these situations, two matching sets, a perfect 

match and a likely match are considered. The EVs to find a match for IEP and ND from 

GO in EV set above with those in BioCyc result in more than one likely match {GO: IEP 

→ BioCyc: EV1, BioCyc: EV2}.  

3. Integrated Evidence Code (EVint) for Perfect Matches: The EV codes encompass the 

quantitative information giving an insight into how the data was obtained. They define 

the conditions/ constraint associated with obtaining the data. 

4. Computing the Reference Index (RIint) 

For biological databases, the pathway information is mostly inferred by the curators 

based on experimental, computational, literature or other evidence. The references 

associated with the database are mostly accounted as a measure of support for the data. 

We introduce a qualitative approach to associate the references supporting the pathway 

or organism (or compounds or reactions). The reference index RIint is computed using a 

heuristic: 

1. For Rank = High, Ignore VF. 

2. For Rank = Low, Use only VF. 

3. For all other combinations of Rank and VF, compute the average. 

Citations may be a robust way of supporting the claim in a database. However, some 

journals are ranked over other journals and citations from those journals will be valued 

more than citations in other sources. To accommodate this, we associate ranks with the 

journals. The Rank specifies the order of importance of journal as designated by the user. 

Additionally, we classify citations based on both the journal Rank and the value factor (VF). 

Finally, based on the Rank and VF, the Reference index (RI) is computed.  

3. Evidence codes integration algorithm 

Given: Set of n databases {D1, D2, D3, D4,……, Dn},  

(For illustration, only three data sources namely, Bio-Cyc, KEGG and MetNetDB 

are considered) 

User input: Confidence weight (CW) 

List: Evidence Codes (EVi) for the object/entity (Ei) among the databases (Di),  

for example; D1/E1 {EV1}, D2/E1 {EV2},…. 

The steps below list the mapping process. 

Step 1. For a given pathway/organism/entity, 

List: EV codes across the databases. (See Tables III(a) and III(b)) 
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Assign: Direct = 1.0; Indirect = 0.8; Computational =0.6; Hypothetical = 0.5. 

Step 2. EV Unification (Rule Set –I) 

BioCyc is a collection of 371 pathway/genome databases. Each pathway/genome database in 

the BioCyc collection describes the genome and metabolic pathways of a single organism. It 

considers a class hierarchy with four main classes. Since BioCyc and MetNetDB virtually use 

the same number of EV codes, the mapping is framed considering four major EV codes. 

KEGG uses only one EV for pathways namely ‘manually entered from published materials’. The 

EV code for KEGG to Direct is mapped using the rules like; 

If Di = BioCyc/AraCyc/MetaCyc, and EV = EV-Exp, then Change EV = Direct 

Unification of the EV codes for the databases is based on the expert knowledge. EV code 

mapping is done with respect to a reference data source and unified according to the set of 

rules above.  

Step 3. Confidence Weight (CWi) Assignment 

Researchers typically have databases that they treat as favored sources for different types of 

information. Since there is no precise rule for deciding which database is more correct and 

up to date, a user defined score, a confidence weight (CW) is applied. The EV mapping process 

is interactive and provides flexibility in choice for databases. Confidence is defined as, 

CWi = {Very Strong, Strong, Moderate, Poor, Very Poor} 

For example: CW KEGG: Strong, CWBioCyc: Normal 

Step 4. EVint (Rule Set-II) 

Using heuristic rules, integrated EVcode is calculated. 

Step 5. Decode EVint value 

The EV value from Step 4 is decoded using: 

EVint = Σ (CWi* EV)/|i| = x  

Step 6. Rank Index 

- Rank the journals in their order of importance. 

- Make an ordered list of journals assigning Rank. 

- Rank the conferences in order of their importance. 

- Make an ordered list of conferences. 

- Assign: 

If the publication in not in the list, Then, Rank = low 

Else, Rank = as defined by the list 

Step 7. Value Factor (VF) 

The VF measures support for the entity using the publication evidence. This is a quantitative 

index with a temporal function. 
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For t = current year, compute VF (t) = |P (t-2)| / |P| where,  

|P (t-2)| = Number of publications in the last (t-2) years for Di, and 

|P| = Total number of publications listed in Di. 

Step 8. Reference Index (RIint) 

- Compute RI for {D1,…Dn} given by, 

RIi{t} = f {Rank, VF} 

- Compute RIint for a pathway as; 

RIint = max {RIi} 

3.1. Integration models 

Data integration aims to work with repositories of data from a variety of sources. As such, 

two databases may not provide identical information, and integrating these two databases 

may yield a richer resource for analysis. The conditions under which data is collected and 

the supporting references play a crucial role in making the analysis more meaningful. So far, 

the integration approaches have focused on different types of pathways. The same pathway 

can have different representations in different databases.  

For example, a known pathway like Glycolysis is represented in different ways in KEGG 

and BioCyc as shown in Figure 3. A universal tool to integrate all types of pathways may 

not be a focus. Additionally, different databases employ various data representations that 

may not provide easy user access or user friendly. Figure 3(a) and 3(b) illustrate 

representational difference between two data sources for the same pathway. Various data 

integration models are defined below. 

 Syntactic Networks: Syntactic networks adhere to the syntax of a set of words as given by 

the representation of the data and do not interpret the meaning associated. Syntactic 

heterogeneity is a result of differences in representation format of data.  

 Semantic Networks (SN): Semantic heterogeneity is a result of differences in 

interpretation of the 'meaning' of data. Semantic models aim to achieve semantic 

interoperability, a dynamic computational capability to integrate and communicate 

both the explicit and implicit meanings of digital content without human intervention.  

 Several features of SN make it particularly useful for integrating biological data include, 

ability to easily define an inheritance hierarchy between concepts in a network format, 

allow economic information storage and deductive reasoning, represent assertions and 

cause effect through abstract relationships, cluster related information for fast retrieval, 

and adapt to new information by dynamic modification of network structures [44]. An 

important feature of SN is the ease and speed to retrieve information concerning a 

particular concept. The use of semantic relationships ensures clustering together related 

concepts in a network. For example, protein synonyms, functional descriptions, coding 

sequences, interactions, experimental data or even relevant research articles can all be 

represented by semantic agents, each of which is directly linked to the corresponding 

protein agent.  
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Figure 3. (a) Pathway from KEGG- Glycolysis (b) BioCyc- Glycolysis 

(a) 

(b)
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Biological information can be retrieved effectively through simple relationship traversal 

starting from a query agent in the semantic network. Two approaches primarily in practice 

for SNs are; 

1. memory-mapped data structure and  

2. indexing flat files.  

In the memory-mapped data structure approach, subsets of data from various sources are 

collected, normalized, and integrated in memory for quick access. While this approach 

performs actual data integration and addresses the problem of poor performance in the 

federated approach, it requires additional calls to traditional relational databases to 

integrate descriptive data. While data cleaning is being performed on some of the data 

sources, it is not being done across all sources or in the same place. This makes it difficult to 

quickly add new data sources. In the indexing flat files approach, flat text files are indexed 

and linked thus supporting fast query performance.  

 Causal Models: A causal model is an abstract model that uses cause and effect logic to 

describe the behaviour of a system. Ex: Expression Quantitative Trait Loci: (eQTLs) 

eQTL analysis is to study the relationship between genome and transcriptome. Gene 

expression QTLs that contain the gene encoding the mRNA are distinguished from 

other transacting eQTLs. eQTL mapping tries to find genomic variation to explain 

expression traits. One difference between eQTL mapping and traditional QTL mapping 

is that, traditional mapping study focuses on one or a few traits, while in most of eQTL 

studies, thousands of expression traits get analyzed and thousands of QTLs are 

declared.  

 Context likelihood of relatedness (CLR): It uses transcriptional profiles of an organism 

across a diverse set of conditions to systematically determine transcriptional regulatory 

interactions. CLR is an extension of the relevance network approach. 

(http://gardnerlab.bu.edu/software&tools.html). [34] Presented architecture for context-

based information integration to solve semantic difference problem, defined some novel 

modeling primitives of translation ontology and propose an algorithm for translation. 

 Bayes Networks (BN): Probabilistic graphical models that represent a set of variables and 

their probabilistic independencies. For example, a BN could represent the probabilistic 

relationships between diseases and symptoms. Given symptoms, the network can be 

used to compute the probabilities of the presence of various diseases. Bayes networks 

focus on score-based structure inference. Available heuristic search strategies include 

simulated annealing and greedy hill-climbing, paired with evaluation of a single 

random local move or all local moves at each step. [45] Bases his approach on the well-

studied statistical tool of Bayesian networks [46]. These networks represent the 

dependence structure between multiple interacting quantities (e.g., expression levels of 

different genes). His approach, probabilistic in nature, is capable of handling noise and 

estimating the confidence in the different features of the network. 

 Hidden Markov Models (HMM): HMM is a statistical model that assumes the system 

being modeled to be a Markov process with unknown parameters, and determines the 



 
Bioinformatics 20 

hidden parameters from the observable parameters. The extracted model parameters 

can then be used to perform further analysis, for example for pattern recognition 

applications. An HMM can be considered as the simplest dynamic Bayesian network. 

HMMs are being applied to the analysis of biological sequences, in particular DNA 

since 1998 [47]. 

3.2. Need to use open grid service architecture ogsa-dai for data access and 

integration 

Apart from the ubiquitous call for more functionality, bioinformatics projects with 

commercial users/partners are very anxious about the security of their data. The issue is 

further complicated by the lack of coherent security models with the evolving WS-RF and 

WS-I specifications which OGSA-DAI now supports. This issue needs to be resolved if 

bioinformatics projects with commercial users/partners are not to be deterred from adopting 

the product despite its utility. In contrast to the diversity of its data resources, a limited 

range of operations on these resources is typically required. For instance, one operation is to 

create a study data set by aggregating data from iterative searches of remote data collections 

using the same taxonomy object (representing a species or other group) as the search 

parameter [48]. 

3.3. Handling the heterogeneity in data representation among databases 

For biological plant pathways, various databases incorporate information about an 

entity/reaction/pathway to a level of detail and define their own data format. This includes 

information like number of fields, column label/tag, pathway name(s), etc. At the outset, 

common information across the tables may look limited and hard to extract mainly because 

of the tag or synonyms (other names) of pathway. Before proceeding for integration of a 

pathway across data sources following steps need to be carried out. For biological pathway 

integration, following needs to be considered.  

 What is the aim of integration?  

To query autonomous and heterogeneous data sources through a common, uniform 

schema (TARGET SCHEMA). 

 How will the integrated data be used?  

 Resolving various conflicts between source and target schema.  

 Offering a common interface to access integrated information.  

 Preserving the autonomy of participating systems.  

 Easily integrating data sources without major modification.  

 Is it within a single data source or across sources?  

 Does it support web based integration?  

 Does it encompass the dynamic nature of the data?   

 What are the data, source, user models, and assumptions underlying the design of 

integration system? 
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Specific data integration problems in the biological field include: 

 Some biological data sources do not provide an expressive language 

 Derived wrapper (operate in two modes) 

 Traditional wrapper 

 Virtual source that buffers the execution result of a local application 

 Data Model Inconsistencies requires complex data transformation coding 

 Data Schema Inconsistencies  

 Schema matching: error-prone task 

 Mapping info: systematically managed 

 Domain Expert participation  

 Along with the data schema consistencies there may be data level inconsistencies such 

as:  

 Data conflict as each object has its own data type, and may be represented in different 

formats 

 Different Query Capabilities affect the query optimization of data integration system  

 Miscellaneous: Network environment, Security 

File formats: For biological pathways, various data sources incorporate information about an 

entity/reaction/pathway to a level of detail and define their own data format. This includes 

information like number of fields, column label/tag, pathway name(s), etc. At the outset, 

common information across the tables may look limited and hard to extract mainly because of 

the tag or synonyms (other names) of pathway. One of the other important differences in the 

way these data sources are developed lies in the synonym representations. Some of the data 

sources limit the synonyms to 10 others may not result into may be over 40 synonyms. While 

we look at the data integration mechanism, if the names of the compounds do not match, then 

the search should be carried forward with the list of synonyms. In integrating different data 

bases this will take different search time. Also, since the field names (compound names) did 

not match, the search must unify the field names and generate a new list of synonyms.  

Granularity of information: Different pathway databases may model pathway data with 

different levels of details. This primarily depends on the process definition. For example, 

one database might treat processes together as a single process, while another database 

might treat these as separate processes. Also, one database might include specific steps to be 

part of the process, while another database might not consider these steps. Additionally, the 

levels of details associated with a certain data base necessitate pathway data modeling with 

different levels of granularity. Different pathway data formats (e.g., SBML and BIND XML) 

have been used to represent data with different levels of details. A semantic net based 

approach to data integration is proposed in [49].  

Heterogeneous formats: As the eXtensible Markup Language (XML) has become the lingua 

franca for representing different types of biological data, there has been a proliferation of 

semantically-overlapping XML formats that are used to represent diverse types of pathway 

data. Examples include the XML-derivatives KGML, SBML, CellML, PSI MI, BIND XML, 

and Genome Object Net XML. Efforts have been underway to translate between these 
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formats (e.g., between PSI MI and BIND XML, and between Genome Object Net and SBML). 

However, the complexity of such a pair-wise translation approach increases dramatically 

with a growing number of different pathway data formats. To address this issue, a standard 

pathway data exchange format is needed. While the Resource Description framework (RDF) 

is an important first step towards the unification of XML formats in describing metadata 

(ontologies), it is not expressive enough to support formal knowledge representation [50]. 

To address this problem, more sophisticated XML-based ontological languages such as the 

Web Ontology Language (OWL) have been developed. An OWL-based pathway exchange 

standard, called BioPAX, has been released to the research community [51]. 

4. Biological Pathway Data Integration  

 An integration model may serve as a tool to the user for a specific type of pathway. An 

algorithm for integration is presented next.  

Metabolic Pathways: Integrating pathways from different data sources for the same species 

extract similar structures in them as the first step; this step integrates vertically given 

pathway within a species across data sources. (Database  is the variable) this includes 

sorting  a graph G (V, E) for common V’s and E’s in Gi (Vi, Ei) and Gj (Vj, Ej). In the discussion 

that follows, integrating pathway as the TCA cycle given by two data sources namely; KEGG 

(Dij1) and BioCyc (Dij2) for E. coli K-12 is considered. For metabolic pathways the details 

associated with each graph include the nodes and edges as given below. For Protein-Protein 

interaction the nomenclature and associated fields for nodes and edges may change. 

However, it is possible to come up with a structure that can describe the Protein-Protein 

interactions or signal transduction pathways.  

 Node: Biological Name, ID, Neighbor, Type, Context, Pathway, Data Source, PubList, 

SynList, empirical formula, Structure 

 Edge: EdgeID, EdgeSource, EdgeDest, Reactiontype (Rev/ Irreversible), Data Source, 

Enzyme, Genes  

Signal Transduction Pathways: The information contained in signal transduction pathways 

is not similar to the metabolic pathways. In signal transduction pathways, the interactions 

can be represented as a class hierarchy. Our aim is also to integrate a sample pathway like 

insulin from sources like KEGG, SPAD to see the performance of our algorithm. 

Interestingly, SPAD assigns evidence code to the edges (interactions) and KEGG assigns 

only one evidence code to the pathway (nodes and edges). The format of the table for 

integration is given above. Before integration information associated with every object 

(node) and edge (interactions) should be considered.  

Before proceeding for integration of a pathway across data sources following steps need to 

be carried out.  

Step 1  

- Check for the pathway name across the input pathways. 
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- If a synonym matches then, go to step 2 else, search for synonyms of pathway name.  

Step 2  

- Choose the integrated output table format as the reference (number of columns, column 

tag)  

- Check for number of columns in the output table. 

- Match each of the column names in the output table with each of the column names in 

the input data files,  

- if column names are same then continue, else see alternate tag for the column, and 

match them.  

- Match order in the output table format with the inputs from different sources.  

- If the order matches, then continue, else reorder the columns as given in output 

table. 

- Check for number of columns in the output table,  

- If the number of columns is not same, then append the table with new columns. 

Step 3  

- Apply EV and Integration algorithms 

The notations used in our algorithm are presented next. 

4.1. Notations 

 S = {s1, s2, s3,…sn} is set of species.      (1) 

 Pij = {pi1, pi2, … pip} is a  set of pathways within si    (2) 

Consider a tuple (Si, (Pij, (Diji))   (3) 

Where, Dijk= {dij1, dij2, dij3, … dijk} is a set of ‘k’ data sources for (Si, Pij)  (4) 

 s1= {(s1, p1j (D1jk)} = {(s1, p1j,d1j1}) (s1, p1j, d1j2}),…( s1,p1j,d1jk)} for  ‘k’ databases,  

For example; s1: E.coli; p1j: TCA Cycle; d1j1= BioCyc, d1j2= KEGG.  

Then, the tuple (v111n, e111m) gives (node, edge) in Biocyc for TCA cycle in E.coli, and the tuple 

(v112p, e112p) gives (node, edge) in KEGG for TCA cycle in E.coli 

� s2 = {(s2, p2j (D2jk)} = {(s2, p2j, d2j1), (s2, p2j, d2j2),……, (s2, p2j, d2jr)} for ‘r’ databases,   

For example, s2: Arabidopsis; p2j: TCA Cycle; d2j1= BioCyc, d2j2= AraCyc 

Then, the tuple (v221p, e221p) gives the (node, edge) in AraCyc for TCA cycle in Arabidopsis, 

and the tuple (v222p, e222p) gives the (node, edge) in KEGG for TCA cycle in Arabidopsis.  

   Each pathway pij for a dijk is given by a graph G (Vijk, Eijk), where, 

 Pijk = G (Vijk, Eijk) represents Pathway ‘j’ from kth datasourcesS for species i’… .(5) 

Where, Vijk = {v ijk1, v ijk2,…v ijkn} = set of nodes in dijk,. (6) 

E ijk = {e ijk1, e ijk2,….e ijkm}=  set of edges in dijk,.  (7) 

� SynList {pathway name} = SynList {Pij} 
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� SynList {entity name} = SynList {v1jkn} 

� EVijk = {EVijk1, …. EVijkh} set of ‘h’ EV Codes  for {si, pij , dijk }, for example; 

 EV1j1= {Set of EVcodes given by Biocyc for E.coli for TCA cycle} 

 EV1j2= {Set of EV codes given by KEGG for E.coli for TCA cycle} 

 EV2j3= {Set of EV codes given by AraCyc for Arabidopsis for TCA cycle} 

 EV2j2= {Set of EV codes given by KEGG for Arabidopsis for TCA cycle} 

� RIijk: Reference index for a database dijk  

� RIijint: Reference index for the integrated pathway 

� CWijk: Confidence weight for a database dijk  

� CWijint: Confidence weight of the integrated  pathway pij within a species 

� Vijint: Integrated node table for a species Si, for a pathway pij  

� Eijint: Integrated edge table for a species Si, for a pathway pij  

� (v1jkn, e ijkm) = (node ‘n’, edge ‘m’) in d1jk  of s1 for p1j; 

� ATT {(v1jkn ,(A)}= {v1jkn, (A1, A2, A3, A4, …As)} = set of attributes of the node v1jkn 

� ATT {(e ijkm, (B)} ={(e ijkm, (B1, B2, B3, … Bt)} = set of attributes of edge e ijkm 

� DATT {v1jkn ,(δA)} = set of derived attributes of the node v1jkn  (EVi, CWi, RIi) 

� DATT {e1jkn ,(δB)}= set of derived attributes of the edge e1jkn  (EVi, CWi, RIi)  

� δVijk  = Set of derived node attributes for Integrated pathway {EVint, CWint, RIint}   

� δEijk= Set of derived edge attributes for Integrated pathway {EVint, CWint, RIint} 

� Vijint = {Σ Vijk } for k= 1 to n 

� E ijint= {Σ E ijk} for k= 1 to n 

� Pijint  = Integrated  pathway from multiple DSs = {Σ Pijk } for k=1 to n  

4.2. Biological Pathway Data Integration Algorithm  

Following selections and inputs are defined by the user. 

 User selected inputs: Species, Pathway, Data sources/database  

 User inputs: Confidence assigned to each database 

 User defined filters (UDF) for entities like substrate nodes, H2O, CO2 etc. for integrated 

pathway [Pijint = G (Vint, Eint)],  

Step 1. 

For each user selected pathway Pij for a species si 

List Dij (d1j1,… dnjk),                                                 ***(KEGG, BioCyc, MetNetDB etc)*** 

Step 2. Define rules to classify the interactions, for example; 

- If the pathway is signal transduction, then use the classifier (Table 1)for interactions 

- If the pathway is metabolic, then reaction is a general representation of the 

interaction 

 Sort (d1j1,… dnjk) according to species (si,dij1), (sj,djj1) etc.  

 Generate a set of (nodes, edges) from all the input data sources {(Vij, Eij)} = {(Vij1, 

Eij1), (Vij2, Eij2)….. (Vijs, Eijs)} 
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 where, Vijk= {vijk1, vijk2, ….vijkt} and Eij1= {e ijk1, e ijk2,….e ijku} 

Step 3.  

For k = 1, …, q (d1j1,… d1jk),  

 For s = 1,.., n, and  q = 1, …m,  

    List ATT {(v1jks, (A)}  

  List ATT {(e ijkq, (B)}   

   Select vijk1 Є Vijk C d1jk  

     For all p =1 to n  

  Check for vijk, 1 Є Vijp (node name match across data sources)  

  If YES, then Apply EV integration algorithm  

   Generate DATT {v1jkn, (δA)}, DATT {e1jkn, (δB)}, 

        Else, For p = 1 to  n, 

   For t = 1, z  

Check if vijk,1 Є SynList {vijp,t } (node name(A) with Synlist(B)) 

   If YES, then Apply EV integration algorithm, 

   Generate DATT {v1jkn, (δA)}, DATT {e1jkn, (δB)}, 

  Else,  

   Check if SynList {vijk,1} has a match with vijp,t 

                If YES, then Apply EV integration Algorithm 

  Else, 

   Check if SynList {vijk,1} has a match with SynList {vijp,t } 

   If vijk,1  =  vijp,l is TRUE,  

   Then,   

   Include vijk, 1 with the matched node name vijk-1, p Є Vijk-1 

   Compute (δVijk, δEijk) 

***This is the node name for the integrated database for the species. Level 1*** 

Generate SynListInt = {SynList (vijk, 1) U Synlist (vijp,l)U…} without duplication 

Associate DOI (date of integration) 

Generate Pijint  

 

 

Step 4. 

Repeat Step 2-3 for eijk Є Eijk in (dij1,… dijk), for pij 

Include information associated with the edge, as given by ‘edges’ such as reaction, 

enzyme, by products and substrates along with attributes like evidence, reference 

publications, context etc. 

** Outputs Eijint table for si using (d1j1,… d1jk),  with EVijint, CWijint and RIijint . Level 1. ** 

Pijint  = {Σ Pijk } for k=1 to n = [{ Vijint, E ijint} + { Σ δVijkt, Σ δEijk} for k=1 to n ]at t= t1 

       = Σ {ATT [(v1jkn, (A)]}, ATT [(e ijkm, (B)]} + Σ {DATT {v1jkn, (δA), DATT {e1jkn, (δB)}for 

all n, m   {δVijk  δEijk} 
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Step 5. 

Generate integrated pathway by consolidating outputs G(Vijint, Eijint) for si 

Step 6. 

For i =1,…n  

Repeat steps 2- 4 to integrate Pij for all species si  

** This generates Table (Vjint, Ejint) = {(Vijint, Eijint) U (Vjjint, Ejjint)U…} for Si, for all i =1, ..n), 

for a pij.  Level 2*** 

Step 7.  

For (j = 1,….p) 

 Integrate for all Pij  

**This generates output table (Vint, Eint) = (Vjint,Ejint) U (Vkint,Ekint) U….for all (j = 1,….p). 

Level 3*** 

Step 8.  

Apply UDF (User defined filter)  

5. Querying Integrated Pathway  

Once the data integration is accomplished, extracting information from the integrated data 

will be of interest to the biologist. There are various mechanisms to extract information from 

the integrated database generated. Some of these are described below.  

Granular computing with semantic network structure captures the abstraction and 

incompleteness associated with biological plant pathway data. It is inspired by the ways in 

which humans granulate information and reason with coarse grained information. The three 

basic concepts underlying the human cognition are granulation, organization, and 

causation. Granulation involves decomposition of whole into parts, organization involves 

integration of parts into whole, and causation involves associations of cause and effects. The 

fundamental issues with granular computing are granulation of the universe, description of 

granules, and relationships between granules. The basic ideas of crisp information 

granulation have appeared in related fields, such as interval analysis, quantization, rough 

set theory, Demster Shafer theory of belief functions, divide and conquer, cluster analysis, 

machine learning, data bases and many others. Granules may be induced as a result of 1) 

equivalence of attribute values, 2) similarity of attribute values, and define the granules 3) 

equality of attribute value. We use granules for defining the user queries associated with the 

integrated pathway. Based on user (biologist) choice, granules can be defined to view the 

integrated pathway. This provides flexibility to the biologist for using the information.  

Previous approaches towards metabolic network reconstruction have used various 

algorithmic methods such as name-matching in IdentiCS [52] and using EC-codes in 

metaSHARK [53] to link metabolic information to genes. The AUtomatic Transfer by 

Orthology of Gene Reaction Associations for Pathway Heuristics (AUTOGRAPH) method 
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[54] uses manually curated metabolic networks, orthologue and their related reactions to 

compare predicted gene-reaction associations.  

Arrendondo [55] Proposes to develop a process for the continuous improvement of the 

inference system used, which is applicable to any such data mining application. It involves 

the comparison of several classifiers like Support Vector Machines (SVMs), Human Expert 

generated Fuzzy, and Genetic Algorithm (GA) generated Fuzzy and Neural Networks using 

various different training data models. In his approach, all classifiers were trained and 

tested with four different data sets: three biological and a synthetically generated mixture 

data set. The obtained results showed a highly accurate prediction capability with the 

mixture data set providing some of the best and most reliable results. 

6. Conclusion 

Biological database integration is a challenging task as the databases are created all over the 

world and updated frequently. For biological data sources that may be derived from an 

earlier existing data source, it is also important to identify the evidence of the data source 

represented by the evidence code, to be included as a candidate for integration. In most data 

integration algorithms the user does not participate thus leading to an integrated data 

source with any effective utility towards analysis.  

Large scale integration of pathway databases promises to help biologists gain insight into 

the deep biological context of a pathway. In this chapter, we presented algorithms that help 

user to select their choice of data sources and apply Evidence code algorithm to compute an 

integrated EV code and RI for the pathway data of interest. The ultimate goal is to generate 

a large-scale composite database containing the entire metabolic network for an organism. 

This qualitative approach includes aspects like user confidence scores for databases for 

mapping EV and generating RI for a given pathway. For the TCA pathway results show that 

generating such a mapping is helpful in visualizing the integrated database that highlights 

the common entities as well as the specifics of each database. As the database confidence 

weight selection is user specific, the integration yields different results for different users for 

the same database which will allow users to explore the effects of different hypotheses on 

the overall network. Once the integrated evidence code is generated, then data integration 

algorithm is applied to get the integrated pathway data. To best attempt integration of such 

data it is imperative to include user participation as user mostly identifies the associations 

and behavior of various compounds, reactions, genes in a given biological pathway leading 

to significant diagnosis. 
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